Advertisements
Advertisements
प्रश्न
Answer in brief.
Obtain the expression for work done in chemical reaction.
उत्तर
- The work done by a system at constant temperature and pressure is given by
W = - Pext ΔV ....(1) - Assuming Pext = P,
W = - PΔV
= - P (V2 - V1)
W = - PV2 + PV1 .....(2) - If the gases were ideal, at constant temperature and pressure.,
PV1 = n1RT and PV2 = n2RT ....(3)
Substitution of equation (3) into equation (2) yields
W = - n2RT + n1RT
= - (n2 - n1) RT
= - Δng RT .....(4) - The equation (4) gives the work done by the system in chemical reactions.
APPEARS IN
संबंधित प्रश्न
Select the most appropriate option.
The enthalpy of formation for all elements in their standard states is _______.
Select the most appropriate option.
Bond enthalpies of H–H, Cl–Cl, and H–Cl bonds are 434 kJ mol–1, 242 kJ mol–1, and 431 kJ mol–1, respectively. Enthalpy of formation of HCl is _______.
Calculate the work done in the decomposition of 132 g of \[\ce{NH4NO3}\] at 100 °C.
\[\ce{NH4NO3_{(s)} -> N2O_{(g)} + 2H2O_{(g)}}\]
State whether work is done on or by the system.
Answer the following question.
Calculate standard enthalpy of reaction,
Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g), from the following data.
Δf H°(Fe2O3) = - 824 kJ/mol,
Δf H°(CO) = - 110 kJ/mol,
Δf H°(CO2) = - 393 kJ/mol
Calculate the standard enthalpy of formation of \[\ce{CH3OH_{(l)}}\] from the following data:
\[\ce{CH3OH_{(l)} + 3/2 O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)} }\]; ΔrH° = − 726 kJ mol-1
\[\ce{C_{(graphite)} + O2_{(g)} -> CO2_{(g)}}\]; ΔcH° = −393 kJ mol−1
\[\ce{H2_{(g)} + 1/2 O_{(g)} -> H2O_{(l)}}\]; ΔfH° = −286 kJ mol−1
Calculate the work done and comment on whether work is done on or by the system for the decomposition of 2 moles of NH4NO3 at 100 °C
NH4NO3(s) → N2O(g) + 2H2O(g)
The work done by the liberated gas when 55.85 g of iron (molar mass 55.85 g mol–1) reacts with hydrochloric acid in an open beaker at 25°C
Define enthalpy of combustion.
Define enthalpy of neutralization.
Calculate the enthalpy change for the reaction \[\ce{Fe2O3 + 3CO -> 2Fe + 3CO2}\] from the following data.
\[\ce{2Fe + 3/2O2 -> Fe2O3}\]; ΔH = −741 kJ
\[\ce{C + 1/2O2 -> CO}\]; ΔH = −137 kJ
\[\ce{C + O2-> CO2}\]; ΔH = −394.5 kJ
The standard enthalpy of formation of ammonia is −46.0 kJ mol−1. The enthalpy change for the reaction:
\[\ce{2NH3_{(g)} -> 2N2_{(g)} + 3H2_{(g)}}\] is ____________.
The difference between heats of reaction at constant pressure and at constanl volume for the reaction
\[\ce{2C6H6_{(l)} + 15O2_{(g)} -> 12CO2_{(g)} + 6H2O_{(l)}}\] at 25°C in kJ
When 6.0 g of O2 reacts with CIF as per \[\ce{2ClF_{(g)} + O2_{(g)} -> Cl2O_{(g)} + OF2_{(g)}}\] the enthalpy change is 38.55 kJ. The standard enthalpy of the reaction is ____________.
Identify the equation in which change in enthalpy is equal to change in internal energy.
When 4 g of iron is burnt to ferric oxide at constant pressure, 29.28 kJ of heat is evolved. What is the enthalpy of formation of ferric oxide?
(Atomic mass of Fe = 56)
Given the bond energies N ≡ N, H – H and N – H bonds are 945, 436 and 391 kJ/mol respectively. The enthalpy of the reaction;
\[\ce{N2_{(g)} + 3H2_{(g)} -> 2NH3_{(g)}}\]
In which of the following reactions does the heat change represent the heat of formation of water?
Work done when 2 moles of an ideal gas is compressed from a volume of 5 m3 to 1 dm3 at 300 K, under a pressure of 100 kPa is ____________.
For the reaction, \[\ce{A_{(s)} + 2B_{(g)} -> 5C_{(s)} + D_{(l)}}\], ∆H and ∆U are related as ____________.
If 2 kJ of heat is released from system and 6 kJ of work is done on the system, what is enthalpy change of system?
For the reaction, \[\ce{N_{2(g)} + 3H_{2(g)} -> 2NH_{3(g)}}\], ΔH is equal to ______.
In which of the following reactions, ΔH is not equal to ΔU?
Calculate ΔU if 2 kJ heat is released and 10 kJ of work is done on the system.
Calculate the work done during the combustion of 0.138 kg of ethanol, C2H5OH(l) at 300 K.
Given: R = 8.314 Jk−1 mol−1, molar mass of ethanol = 46 g mol−1.
Define enthalpy.