Advertisements
Advertisements
Question
Answer in brief.
Obtain the expression for work done in chemical reaction.
Solution
- The work done by a system at constant temperature and pressure is given by
W = - Pext ΔV ....(1) - Assuming Pext = P,
W = - PΔV
= - P (V2 - V1)
W = - PV2 + PV1 .....(2) - If the gases were ideal, at constant temperature and pressure.,
PV1 = n1RT and PV2 = n2RT ....(3)
Substitution of equation (3) into equation (2) yields
W = - n2RT + n1RT
= - (n2 - n1) RT
= - Δng RT .....(4) - The equation (4) gives the work done by the system in chemical reactions.
APPEARS IN
RELATED QUESTIONS
Select the most appropriate option.
Bond enthalpies of H–H, Cl–Cl, and H–Cl bonds are 434 kJ mol–1, 242 kJ mol–1, and 431 kJ mol–1, respectively. Enthalpy of formation of HCl is _______.
Calculate the work done in the decomposition of 132 g of \[\ce{NH4NO3}\] at 100 °C.
\[\ce{NH4NO3_{(s)} -> N2O_{(g)} + 2H2O_{(g)}}\]
State whether work is done on or by the system.
Answer the following question.
Calculate ΔU at 298 K for the reaction,
C2H4(g) + HCl(g) → C2H5Cl(g), ΔH = - 72.3 kJ
How much PV work is done?
Answer the following question.
When 6.0 g of O2 reacts with CIF as per
\[\ce{2ClF_{(g)} + O2_{(g)} -> Cl2O_{(g)} + OF2_{(g)}}\]
The enthalpy change is 38.55 kJ. What is the standard enthalpy of the reaction? (Δr H° = 205.6 kJ)
An ideal gas expands from the volume of 1 × 10–3 m3 to 1 × 10–2 m3 at 300 K against a constant pressure at 1 × 105 Nm–2. The work done is
The work done by the liberated gas when 55.85 g of iron (molar mass 55.85 g mol–1) reacts with hydrochloric acid in an open beaker at 25°C
Define enthalpy of neutralization.
Derive the relation between ∆H and ∆U for an ideal gas. Explain each term involved in the equation.
The standard enthalpies of formation of SO2 and SO3 are −297 kJ mol−1 and −396 kJ mol−1 respectively. Calculate the standard enthalpy of reaction for the reaction: \[\ce{SO2 + 1/2O2 -> SO3}\]
The standard enthalpy of formation of ammonia is −46.0 kJ mol−1. The enthalpy change for the reaction:
\[\ce{2NH3_{(g)} -> 2N2_{(g)} + 3H2_{(g)}}\] is ____________.
What is standard N ≡ N bond enthalpy from following reaction,
\[\ce{N2_{(g)} + 3H2_{(g)} -> 2NH3_{(g)}; \Delta H^0 = - 83 kJ}\]
\[\ce{ΔH^0_{(H-H)}}\] = 435 kJ; \[\ce{ΔH^0_{(N-H)}}\] = 389 kJ
When 6.0 g of O2 reacts with CIF as per \[\ce{2ClF_{(g)} + O2_{(g)} -> Cl2O_{(g)} + OF2_{(g)}}\] the enthalpy change is 38.55 kJ. The standard enthalpy of the reaction is ____________.
Identify the equation in which change in enthalpy is equal to change in internal energy.
When 4 g of iron is burnt to ferric oxide at constant pressure, 29.28 kJ of heat is evolved. What is the enthalpy of formation of ferric oxide?
(Atomic mass of Fe = 56)
In which of the following reactions does the heat change represent the heat of formation of water?
For the reaction, \[\ce{A_{(s)} + 2B_{(g)} -> 5C_{(s)} + D_{(l)}}\], ∆H and ∆U are related as ____________.
If 2 kJ of heat is released from system and 6 kJ of work is done on the system, what is enthalpy change of system?
In which of the following reactions, ΔH is not equal to ΔU?
What is the amount of work done when 0.5 mole of methane, CH4 (g), is subjected to combustion at 300 K? (Given, R = 8.314 JK-1mol-1)
The work done during combustion of 9 × 10-2 kg of ethane, C2H6 (g) at 300 K is ______.
(Given R = 8.314 J deg-1, atomic mass C = 12, H = 1)
Calculate ΔU if 2 kJ heat is released and 10 kJ of work is done on the system.
Calculate the work done during the combustion of 0.138 kg of ethanol, C2H5OH(l) at 300 K.
Given: R = 8.314 Jk−1 mol−1, molar mass of ethanol = 46 g mol−1.
Under what conditions ΔH = ΔU?
Calculate the work done in oxidation of so2(g) at 25°C if, \[\ce{2SO_{2(g)} + O2_{(g)} -> 2SO_{3(g)}}\], R = 8.314 J K−1 mol−1.
Calculate work done in oxidation of 4 moles of SO2 at 25°C. (Given: R = 8.314 JK−1 mol−1 ).
Define enthalpy.