English

Calculate the work done in the decomposition of 132 g of NHA4NOA3 at 100 °C. NHA4NOA3A(s)⟶NA2OA(g)+2HA2OA(g) State whether work is done on or by the system. - Chemistry

Advertisements
Advertisements

Question

Calculate the work done in the decomposition of 132 g of \[\ce{NH4NO3}\] at 100 °C.

\[\ce{NH4NO3_{(s)} -> N2O_{(g)} + 2H2O_{(g)}}\]

State whether work is done on or by the system.

Sum

Solution

Given:
Decomposition of 1 mole of \[\ce{NH4NO3}\]

Temperature = T = 100 °C = 373 K

To find: Work done and to determine whether work is done on the system or by the system.

Formula: W = −Δ ngRT

Calculation:

Molar mass of \[\ce{NH4NO3}\] = (2 × 14) + (3 × 16) + (4 × 1) = 80 g mol-1

Moles of \[\ce{NH4NO3}\] = n = `(132 "g")/(80 "g mol"^-1)` = 1.65 mol

The given reaction is for 1 mole of NH4NO3. For 1.65 moles of \[\ce{NH4NO3}\], the reaction is given as follows:

\[\ce{1.65 NH4NO3_{(s)} -> 1.65 N2O_{(g)} + 3.30 H2O_{(g)}}\] 

Now, 

Δng = (moles of product gases) − (moles of reactant gases)

Δng = (1.65 + 3.30) − 0 = +4.95 mol (∵ \[\ce{NH4NO3}\] is in solid state)

Hence,

W = −Δng RT

= − (+ 4.95 mol) × 8.314 J K-1 mol-1 × 373 K

= −15350 J

= −15.35 kJ

Work is done by the system (since W < 0).

The work done is −15.35 kJ. The work is done by the system.

shaalaa.com
Enthalpy (H)
  Is there an error in this question or solution?
Chapter 4: Chemical Thermodynamics - Exercises [Page 88]

APPEARS IN

Balbharati Chemistry [English] 12 Standard HSC
Chapter 4 Chemical Thermodynamics
Exercises | Q 4.08 | Page 88

RELATED QUESTIONS

Select the most appropriate option.

If the standard enthalpy of formation of methanol is –238.9 kJ mol–1 then entropy change of the surroundings will be _______. 


Answer the following question.

Calculate standard enthalpy of reaction,

Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g), from the following data.

Δf H°(Fe2O3) = - 824 kJ/mol,

Δf H°(CO) = - 110 kJ/mol,

Δf H°(CO2) = - 393 kJ/mol


Calculate the amount of work done in the

1) Oxidation of 1 mole HCl(g) at 200 °C according to reaction.

4HCl(g) + O2(g) → 2Cl2(g) + 2H2O(g)

2) Decomposition of one mole of NO at 300 °C for the reaction

2NO(g) → N2(g) + O2(g)


Calculate the standard enthalpy of formation of \[\ce{CH3OH_{(l)}}\] from the following data:

\[\ce{CH3OH_{(l)} + 3/2 O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)} }\]; ΔrH° = − 726 kJ mol-1 

\[\ce{C_{(graphite)} + O2_{(g)} -> CO2_{(g)}}\]; ΔcH° = −393 kJ mol−1

\[\ce{H2_{(g)} + 1/2 O_{(g)} -> H2O_{(l)}}\]; ΔfH° = −286 kJ mol−1


Calculate the work done and comment on whether work is done on or by the system for the decomposition of 2 moles of NH4NO3 at 100 °C
NH4NO3(s) → N2O(g) + 2H2O(g)


Define enthalpy of neutralization.


Enthalpy of neutralization is always a constant when a strong acid is neutralized by a strong base: account for the statement.


Derive the relation between ∆H and ∆U for an ideal gas. Explain each term involved in the equation.


The standard enthalpies of formation of SO2 and SO3 are −297 kJ mol−1 and −396 kJ mol−1 respectively. Calculate the standard enthalpy of reaction for the reaction: \[\ce{SO2 + 1/2O2 -> SO3}\]


When 6.0 g of O2 reacts with CIF as per \[\ce{2ClF_{(g)} + O2_{(g)} -> Cl2O_{(g)} + OF2_{(g)}}\] the enthalpy change is 38.55 kJ. The standard enthalpy of the reaction is ____________.


Identify the equation in which change in enthalpy is equal to change in internal energy.


When 4 g of iron is burnt to ferric oxide at constant pressure, 29.28 kJ of heat is evolved. What is the enthalpy of formation of ferric oxide?

(Atomic mass of Fe = 56)


The enthalpy change for two reactions are given by the equations

\[\ce{2Cr_{(s)} + 1.5 O2_{(g)} -> Cr2O3_{(s)}}\];

∆H1 = −1130 kJ ............(i)

\[\ce{C_{(s)} + 0.5 O2_{(g)} -> CO_{(g)}}\];

∆H2 = −110 kJ .........(ii)

What is the enthalpy change, in kJ, for the following reaction?

\[\ce{3C_{(s)} + Cr2O3_{(s)} -> 2Cr_{(s)} + 3CO_{(g)}}\]


In which of the following reactions does the heat change represent the heat of formation of water?


In which of the following reactions, ∆H is greater than ∆U?


Work done when 2 moles of an ideal gas is compressed from a volume of 5 m3 to 1 dm3 at 300 K, under a pressure of 100 kPa is ____________.


The work done during combustion of 9 × 10-2 kg of ethane, C2H6 (g) at 300 K is ______.
(Given R = 8.314 J deg-1, atomic mass C = 12, H = 1)


Calculate ΔU if 2 kJ heat is released and 10 kJ of work is done on the system.


Calculate the work done during the combustion of 0.138 kg of ethanol, C2H5OH(l) at 300 K.
Given: R = 8.314 Jk−1 mol−1, molar mass of ethanol = 46 g mol−1.


Calculate the work done in oxidation of so2(g) at 25°C if, \[\ce{2SO_{2(g)} + O2_{(g)} -> 2SO_{3(g)}}\], R = 8.314 J K−1 mol−1.


Calculate ΔS of the surrounding if the standard enthalpy of formation of methanol is − 238.9 kJ mol−1.


Define enthalpy.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×