Advertisements
Advertisements
Question
Calculate the standard enthalpy of formation of \[\ce{CH3OH_{(l)}}\] from the following data:
\[\ce{CH3OH_{(l)} + 3/2 O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)} }\]; ΔrH° = − 726 kJ mol-1
\[\ce{C_{(graphite)} + O2_{(g)} -> CO2_{(g)}}\]; ΔcH° = −393 kJ mol−1
\[\ce{H2_{(g)} + 1/2 O_{(g)} -> H2O_{(l)}}\]; ΔfH° = −286 kJ mol−1
Solution
Given: Given equations are,
\[\ce{CH3OH_{(l)} + 3/2 O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)} }\]; ΔrH° = − 726 kJ mol-1 ...(i)
\[\ce{C_{(graphite)} + O2_{(g)} -> CO2_{(g)}}\]; ΔcH° = −393 kJ mol−1 ...(ii)
\[\ce{H2_{(g)} + 1/2 O_{(g)} -> H2O_{(l)}}\]; ΔfH° = −286 kJ mol−1 ...(iii)
To find: The standard enthalpy of formation (ΔfH°) of \[\ce{CH3OH_{(l)}}\]
Calculation:
Required equation is, \[\ce{C_{(graphite)} + 2H2_{(g)} + 1/2 O2_{(g)} -> CH3OH_{(l)}}\]
Multiply equation (iii) by 2 and add to equation (ii),
\[\ce{2H2_{(g)} + O2_{(g)} -> 2H2O_{(l)}}\]; ΔfH° = −572 kJ mol−1
\[\ce{C_{(graphite)} + O2_{(g)} -> CO2_{(g)}}\]; ΔcH° = −393 kJ mol−1
________________________________________________________________________
\[\ce{C_{(graphite)} + 2H2_{(g)} + 2O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)}}\], ΔrH° = −572 −393 = −965kJ mol−1 ...(iv)
Reverse equation (i) and add to equation (iv),
\[\ce{CO2_{(g)} + 2H2O_{(l)} -> CH3OH_{(l)} + 3/2O2_{(g)}}\], ΔrH° = − 726 kJ mol-1
\[\ce{C_{(graphite)} + 2H2_{(g)} + 2O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)}}\], ΔrH° = −965
_____________________________________________________________________________
\[\ce{C_{(graphite)} + 2H2_{(g)} + 1/2O2_{(g)} -> CO2_{(g)} + CH3OH_{(l)}}\], ΔfH° = ΔrH° = 726 −965 = −239kJ mol−1
∴ The standard enthalpy of formation (ΔfH°) of \[\ce{CH3OH_{(l)}}\] from the given data is −239kJ mol−1
APPEARS IN
RELATED QUESTIONS
Select the most appropriate option.
The enthalpy of formation for all elements in their standard states is _______.
Answer in brief.
Obtain the expression for work done in chemical reaction.
Answer the following question.
Calculate standard enthalpy of reaction,
Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g), from the following data.
Δf H°(Fe2O3) = - 824 kJ/mol,
Δf H°(CO) = - 110 kJ/mol,
Δf H°(CO2) = - 393 kJ/mol
Answer the following question.
Calculate ΔU at 298 K for the reaction,
C2H4(g) + HCl(g) → C2H5Cl(g), ΔH = - 72.3 kJ
How much PV work is done?
Answer the following question.
When 6.0 g of O2 reacts with CIF as per
\[\ce{2ClF_{(g)} + O2_{(g)} -> Cl2O_{(g)} + OF2_{(g)}}\]
The enthalpy change is 38.55 kJ. What is the standard enthalpy of the reaction? (Δr H° = 205.6 kJ)
Calculate the work done and comment on whether work is done on or by the system for the decomposition of 2 moles of NH4NO3 at 100 °C
NH4NO3(s) → N2O(g) + 2H2O(g)
Write the mathematical relation between ΔH and ΔU during the formation of one mole of CO2 under standard conditions.
Write the expression showing the relation between enthalpy change and internal energy change for gaseous phase reaction.
An ideal gas expands from the volume of 1 × 10–3 m3 to 1 × 10–2 m3 at 300 K against a constant pressure at 1 × 105 Nm–2. The work done is
Define enthalpy of combustion.
Derive the relation between ∆H and ∆U for an ideal gas. Explain each term involved in the equation.
Calculate the enthalpy change for the reaction \[\ce{Fe2O3 + 3CO -> 2Fe + 3CO2}\] from the following data.
\[\ce{2Fe + 3/2O2 -> Fe2O3}\]; ΔH = −741 kJ
\[\ce{C + 1/2O2 -> CO}\]; ΔH = −137 kJ
\[\ce{C + O2-> CO2}\]; ΔH = −394.5 kJ
The standard enthalpies of formation of SO2 and SO3 are −297 kJ mol−1 and −396 kJ mol−1 respectively. Calculate the standard enthalpy of reaction for the reaction: \[\ce{SO2 + 1/2O2 -> SO3}\]
When 4 g of iron is burnt to ferric oxide at constant pressure, 29.28 kJ of heat is evolved. What is the enthalpy of formation of ferric oxide?
(Atomic mass of Fe = 56)
In which of the following reactions does the heat change represent the heat of formation of water?
Work done when 2 moles of an ideal gas is compressed from a volume of 5 m3 to 1 dm3 at 300 K, under a pressure of 100 kPa is ____________.
For the reaction, \[\ce{A_{(s)} + 2B_{(g)} -> 5C_{(s)} + D_{(l)}}\], ∆H and ∆U are related as ____________.
If 2 kJ of heat is released from system and 6 kJ of work is done on the system, what is enthalpy change of system?
For the reaction, \[\ce{N_{2(g)} + 3H_{2(g)} -> 2NH_{3(g)}}\], ΔH is equal to ______.
In which of the following reactions, ΔH is not equal to ΔU?
What is the amount of work done when 0.5 mole of methane, CH4 (g), is subjected to combustion at 300 K? (Given, R = 8.314 JK-1mol-1)
The work done during combustion of 9 × 10-2 kg of ethane, C2H6 (g) at 300 K is ______.
(Given R = 8.314 J deg-1, atomic mass C = 12, H = 1)
Calculate the work done during the combustion of 0.138 kg of ethanol, C2H5OH(l) at 300 K.
Given: R = 8.314 Jk−1 mol−1, molar mass of ethanol = 46 g mol−1.
Calculate ΔS of the surrounding if the standard enthalpy of formation of methanol is − 238.9 kJ mol−1.
Define enthalpy.