English

Select the most appropriate option. If the standard enthalpy of formation of methanol is –238.9 kJ mol–1 then entropy change of the surroundings will be _______. - Chemistry

Advertisements
Advertisements

Question

Select the most appropriate option.

If the standard enthalpy of formation of methanol is –238.9 kJ mol–1 then entropy change of the surroundings will be _______. 

Options

  • –801.7 J K–1

  • 801.7 J K–1

  • 0.8017 J K–1

  • –0.8017 J K–1

MCQ

Solution

If the standard enthalpy of formation of methanol is –238.9 kJ mol–1 then entropy change of the surroundings will be 801.7 J K–1.

Explanation:

For standard state, temperature = 298 K

`triangle "S"_"surr" = - (triangle "H")/"T" = - ((- 238.9  "kJ"))/(298 "k")`

= + 0.8017 kJ K-1

= 801.7 J K-1 

shaalaa.com
Enthalpy (H)
  Is there an error in this question or solution?
Chapter 4: Chemical Thermodynamics - Exercises [Page 87]

APPEARS IN

Balbharati Chemistry [English] 12 Standard HSC
Chapter 4 Chemical Thermodynamics
Exercises | Q 1.07 | Page 87

RELATED QUESTIONS

Answer the following question.

Calculate standard enthalpy of reaction,

Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g), from the following data.

Δf H°(Fe2O3) = - 824 kJ/mol,

Δf H°(CO) = - 110 kJ/mol,

Δf H°(CO2) = - 393 kJ/mol


Calculate the amount of work done in the

1) Oxidation of 1 mole HCl(g) at 200 °C according to reaction.

4HCl(g) + O2(g) → 2Cl2(g) + 2H2O(g)

2) Decomposition of one mole of NO at 300 °C for the reaction

2NO(g) → N2(g) + O2(g)


Answer the following question.

When 6.0 g of O2 reacts with CIF as per 

\[\ce{2ClF_{(g)} + O2_{(g)} -> Cl2O_{(g)} + OF2_{(g)}}\]

The enthalpy change is 38.55 kJ. What is the standard enthalpy of the reaction? (Δr H° = 205.6 kJ)


Write the mathematical relation between ΔH and ΔU during the formation of one mole of CO2 under standard conditions.


An ideal gas expands from the volume of 1 × 10–3 m3 to 1 × 10–2 m3 at 300 K against a constant pressure at 1 × 105 Nm–2. The work done is


The work done by the liberated gas when 55.85 g of iron (molar mass 55.85 g mol–1) reacts with hydrochloric acid in an open beaker at 25°C


Define enthalpy of neutralization.


Enthalpy of neutralization is always a constant when a strong acid is neutralized by a strong base: account for the statement.


Calculate the enthalpy change for the reaction \[\ce{Fe2O3 + 3CO -> 2Fe + 3CO2}\] from the following data.

\[\ce{2Fe + 3/2O2 -> Fe2O3}\]; ΔH = −741 kJ

\[\ce{C + 1/2O2 -> CO}\]; ΔH = −137 kJ

\[\ce{C + O2-> CO2}\]; ΔH = −394.5 kJ


The standard enthalpies of formation of SO2 and SO3 are −297 kJ mol−1 and −396 kJ mol−1 respectively. Calculate the standard enthalpy of reaction for the reaction: \[\ce{SO2 + 1/2O2 -> SO3}\]


The standard enthalpy of formation of ammonia is −46.0 kJ mol−1. The enthalpy change for the reaction:

\[\ce{2NH3_{(g)} -> 2N2_{(g)} + 3H2_{(g)}}\] is ____________.


What is standard N ≡ N bond enthalpy from following reaction,

\[\ce{N2_{(g)} + 3H2_{(g)} -> 2NH3_{(g)}; \Delta H^0 = - 83 kJ}\]

\[\ce{ΔH^0_{(H-H)}}\] = 435 kJ; \[\ce{ΔH^0_{(N-H)}}\] = 389 kJ


The difference between heats of reaction at constant pressure and at constanl volume for the reaction

\[\ce{2C6H6_{(l)} + 15O2_{(g)} -> 12CO2_{(g)} + 6H2O_{(l)}}\] at 25°C in kJ


When 6.0 g of O2 reacts with CIF as per \[\ce{2ClF_{(g)} + O2_{(g)} -> Cl2O_{(g)} + OF2_{(g)}}\] the enthalpy change is 38.55 kJ. The standard enthalpy of the reaction is ____________.


In which of the following reactions, ∆H is greater than ∆U?


For the reaction, \[\ce{A_{(s)} + 2B_{(g)} -> 5C_{(s)} + D_{(l)}}\], ∆H and ∆U are related as ____________.


For the reaction, \[\ce{N_{2(g)} + 3H_{2(g)} -> 2NH_{3(g)}}\], ΔH is equal to ______.


In which of the following reactions, ΔH is not equal to ΔU?


The work done during combustion of 9 × 10-2 kg of ethane, C2H6 (g) at 300 K is ______.
(Given R = 8.314 J deg-1, atomic mass C = 12, H = 1)


Calculate ΔU if 2 kJ heat is released and 10 kJ of work is done on the system.


Calculate the work done during the combustion of 0.138 kg of ethanol, C2H5OH(l) at 300 K.
Given: R = 8.314 Jk−1 mol−1, molar mass of ethanol = 46 g mol−1.


Under what conditions ΔH = ΔU?


In a particular reaction, 2 kJ of heat is released by the system and 8 kJ of work is done on the system. Determine ΔU.


Calculate work done in oxidation of 4 moles of SO2 at 25°C. (Given: R = 8.314 JK−1 mol−1 ).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×