Advertisements
Advertisements
प्रश्न
Select the most appropriate option.
If the standard enthalpy of formation of methanol is –238.9 kJ mol–1 then entropy change of the surroundings will be _______.
पर्याय
–801.7 J K–1
801.7 J K–1
0.8017 J K–1
–0.8017 J K–1
उत्तर
If the standard enthalpy of formation of methanol is –238.9 kJ mol–1 then entropy change of the surroundings will be 801.7 J K–1.
Explanation:
For standard state, temperature = 298 K
`triangle "S"_"surr" = - (triangle "H")/"T" = - ((- 238.9 "kJ"))/(298 "k")`
= + 0.8017 kJ K-1
= 801.7 J K-1
APPEARS IN
संबंधित प्रश्न
Select the most appropriate option.
The enthalpy of formation for all elements in their standard states is _______.
Answer the following question.
Calculate standard enthalpy of reaction,
Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g), from the following data.
Δf H°(Fe2O3) = - 824 kJ/mol,
Δf H°(CO) = - 110 kJ/mol,
Δf H°(CO2) = - 393 kJ/mol
Calculate the standard enthalpy of formation of \[\ce{CH3OH_{(l)}}\] from the following data:
\[\ce{CH3OH_{(l)} + 3/2 O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)} }\]; ΔrH° = − 726 kJ mol-1
\[\ce{C_{(graphite)} + O2_{(g)} -> CO2_{(g)}}\]; ΔcH° = −393 kJ mol−1
\[\ce{H2_{(g)} + 1/2 O_{(g)} -> H2O_{(l)}}\]; ΔfH° = −286 kJ mol−1
Write the mathematical relation between ΔH and ΔU during the formation of one mole of CO2 under standard conditions.
An ideal gas expands from the volume of 1 × 10–3 m3 to 1 × 10–2 m3 at 300 K against a constant pressure at 1 × 105 Nm–2. The work done is
Define enthalpy of combustion.
Enthalpy of neutralization is always a constant when a strong acid is neutralized by a strong base: account for the statement.
Derive the relation between ∆H and ∆U for an ideal gas. Explain each term involved in the equation.
The standard enthalpies of formation of SO2 and SO3 are −297 kJ mol−1 and −396 kJ mol−1 respectively. Calculate the standard enthalpy of reaction for the reaction: \[\ce{SO2 + 1/2O2 -> SO3}\]
For which of the following ∆U = ∆H?
The difference between heats of reaction at constant pressure and at constanl volume for the reaction
\[\ce{2C6H6_{(l)} + 15O2_{(g)} -> 12CO2_{(g)} + 6H2O_{(l)}}\] at 25°C in kJ
Identify the equation in which change in enthalpy is equal to change in internal energy.
When 4 g of iron is burnt to ferric oxide at constant pressure, 29.28 kJ of heat is evolved. What is the enthalpy of formation of ferric oxide?
(Atomic mass of Fe = 56)
The enthalpy change for two reactions are given by the equations
\[\ce{2Cr_{(s)} + 1.5 O2_{(g)} -> Cr2O3_{(s)}}\];
∆H1 = −1130 kJ ............(i)
\[\ce{C_{(s)} + 0.5 O2_{(g)} -> CO_{(g)}}\];
∆H2 = −110 kJ .........(ii)
What is the enthalpy change, in kJ, for the following reaction?
\[\ce{3C_{(s)} + Cr2O3_{(s)} -> 2Cr_{(s)} + 3CO_{(g)}}\]
Given the bond energies N ≡ N, H – H and N – H bonds are 945, 436 and 391 kJ/mol respectively. The enthalpy of the reaction;
\[\ce{N2_{(g)} + 3H2_{(g)} -> 2NH3_{(g)}}\]
In which of the following reactions does the heat change represent the heat of formation of water?
In which of the following reactions, ∆H is greater than ∆U?
Work done when 2 moles of an ideal gas is compressed from a volume of 5 m3 to 1 dm3 at 300 K, under a pressure of 100 kPa is ____________.
For the reaction, \[\ce{A_{(s)} + 2B_{(g)} -> 5C_{(s)} + D_{(l)}}\], ∆H and ∆U are related as ____________.
If 2 kJ of heat is released from system and 6 kJ of work is done on the system, what is enthalpy change of system?
For the reaction, \[\ce{N_{2(g)} + 3H_{2(g)} -> 2NH_{3(g)}}\], ΔH is equal to ______.
What is the amount of work done when 0.5 mole of methane, CH4 (g), is subjected to combustion at 300 K? (Given, R = 8.314 JK-1mol-1)
Under what conditions ΔH = ΔU?
In a particular reaction, 2 kJ of heat is released by the system and 8 kJ of work is done on the system. Determine ΔU.
Calculate work done in oxidation of 4 moles of SO2 at 25°C. (Given: R = 8.314 JK−1 mol−1 ).