Advertisements
Advertisements
Question
Obtain the relationship between ΔH and ΔU for gas phase reactions.
Solution
i. At constant pressure, ΔH and ΔU are related as
ΔH = ΔU + PΔV ...(1)
ii. For reactions involving gases, ΔV cannot be neglected.
Therefore, ΔH = ΔU + PΔV
= ΔU + P(V2 – V1)
ΔH = ΔU + PV2 – PV1 ...(2)
where, V1 is the volume of gas-phase reactants and V2 that of the gaseous products.
iii. We assume reactant and product behave ideally. Applying an ideal gas equation, PV = nRT. Suppose that n1 moles of gaseous reactants produce n2 moles of gaseous products. Then,
PV1 = n1RT and PV2 = n2RT ...(3)
iv. Substitution of equation (3) into equation (2) yields
ΔH = ΔU + n2RT – n1RT
= ΔU + (n2 – n1) RT
= ΔU + Δng RT ...(4)
where, Δng is the difference between the number of moles of products and those of reactants.
APPEARS IN
RELATED QUESTIONS
Calculate the work done in the decomposition of 132 g of \[\ce{NH4NO3}\] at 100 °C.
\[\ce{NH4NO3_{(s)} -> N2O_{(g)} + 2H2O_{(g)}}\]
State whether work is done on or by the system.
Answer the following question.
Calculate ΔU at 298 K for the reaction,
C2H4(g) + HCl(g) → C2H5Cl(g), ΔH = - 72.3 kJ
How much PV work is done?
Calculate the amount of work done in the
1) Oxidation of 1 mole HCl(g) at 200 °C according to reaction.
4HCl(g) + O2(g) → 2Cl2(g) + 2H2O(g)
2) Decomposition of one mole of NO at 300 °C for the reaction
2NO(g) → N2(g) + O2(g)
Answer the following question.
When 6.0 g of O2 reacts with CIF as per
\[\ce{2ClF_{(g)} + O2_{(g)} -> Cl2O_{(g)} + OF2_{(g)}}\]
The enthalpy change is 38.55 kJ. What is the standard enthalpy of the reaction? (Δr H° = 205.6 kJ)
Write the mathematical relation between ΔH and ΔU during the formation of one mole of CO2 under standard conditions.
Write the expression showing the relation between enthalpy change and internal energy change for gaseous phase reaction.
An ideal gas expands from the volume of 1 × 10–3 m3 to 1 × 10–2 m3 at 300 K against a constant pressure at 1 × 105 Nm–2. The work done is
The standard enthalpies of formation of SO2 and SO3 are −297 kJ mol−1 and −396 kJ mol−1 respectively. Calculate the standard enthalpy of reaction for the reaction: \[\ce{SO2 + 1/2O2 -> SO3}\]
The standard enthalpy of formation of ammonia is −46.0 kJ mol−1. The enthalpy change for the reaction:
\[\ce{2NH3_{(g)} -> 2N2_{(g)} + 3H2_{(g)}}\] is ____________.
The difference between heats of reaction at constant pressure and at constanl volume for the reaction
\[\ce{2C6H6_{(l)} + 15O2_{(g)} -> 12CO2_{(g)} + 6H2O_{(l)}}\] at 25°C in kJ
Identify the equation in which change in enthalpy is equal to change in internal energy.
When 4 g of iron is burnt to ferric oxide at constant pressure, 29.28 kJ of heat is evolved. What is the enthalpy of formation of ferric oxide?
(Atomic mass of Fe = 56)
The enthalpy change for two reactions are given by the equations
\[\ce{2Cr_{(s)} + 1.5 O2_{(g)} -> Cr2O3_{(s)}}\];
∆H1 = −1130 kJ ............(i)
\[\ce{C_{(s)} + 0.5 O2_{(g)} -> CO_{(g)}}\];
∆H2 = −110 kJ .........(ii)
What is the enthalpy change, in kJ, for the following reaction?
\[\ce{3C_{(s)} + Cr2O3_{(s)} -> 2Cr_{(s)} + 3CO_{(g)}}\]
Given the bond energies N ≡ N, H – H and N – H bonds are 945, 436 and 391 kJ/mol respectively. The enthalpy of the reaction;
\[\ce{N2_{(g)} + 3H2_{(g)} -> 2NH3_{(g)}}\]
In which of the following reactions, ∆H is greater than ∆U?
For the reaction, \[\ce{A_{(s)} + 2B_{(g)} -> 5C_{(s)} + D_{(l)}}\], ∆H and ∆U are related as ____________.
For the reaction, \[\ce{N_{2(g)} + 3H_{2(g)} -> 2NH_{3(g)}}\], ΔH is equal to ______.
The work done during combustion of 9 × 10-2 kg of ethane, C2H6 (g) at 300 K is ______.
(Given R = 8.314 J deg-1, atomic mass C = 12, H = 1)
Calculate ΔU if 2 kJ heat is released and 10 kJ of work is done on the system.
Under what conditions ΔH = ΔU?
Calculate ΔS of the surrounding if the standard enthalpy of formation of methanol is − 238.9 kJ mol−1.
In a particular reaction, 2 kJ of heat is released by the system and 8 kJ of work is done on the system. Determine ΔU.
Calculate work done in oxidation of 4 moles of SO2 at 25°C. (Given: R = 8.314 JK−1 mol−1 ).