मराठी

Evaluate the following limit. limx→0sinaxbx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit.

`lim_(x -> 0) (sin ax)/ (bx)`

बेरीज

उत्तर

`lim_(x -> 0) (sin ax)/ (bx)`

At x = 0, the value of the given function takes the form `0/0`.

Now, `lim_(x → 0) (sin ax)/(bx)`= `lim_(x → 0) (sin ax)/(ax) xx (ax)/(bx)`

= `lim_(x → 0) ((sin ax)/(ax)) xx (a/b)`

= `a/blim_(ax → 0) ((sin ax)/(ax))`       [x → 0 ⇒ ax → 0]

= `a/b xx 1`        `[lim_(y->0) sin y/y = 1]`

= `a/b`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise 13.1 [पृष्ठ ३०१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise 13.1 | Q 13 | पृष्ठ ३०१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×