English

Evaluate the following limit. limx→0sinaxbx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following limit.

`lim_(x -> 0) (sin ax)/ (bx)`

Sum

Solution

`lim_(x -> 0) (sin ax)/ (bx)`

At x = 0, the value of the given function takes the form `0/0`.

Now, `lim_(x → 0) (sin ax)/(bx)`= `lim_(x → 0) (sin ax)/(ax) xx (ax)/(bx)`

= `lim_(x → 0) ((sin ax)/(ax)) xx (a/b)`

= `a/blim_(ax → 0) ((sin ax)/(ax))`       [x → 0 ⇒ ax → 0]

= `a/b xx 1`        `[lim_(y->0) sin y/y = 1]`

= `a/b`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise 13.1 [Page 301]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise 13.1 | Q 13 | Page 301
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×