English

Evaluate the following limit. limx→0(x+1)5-1x - Mathematics

Advertisements
Advertisements

Question

Evaluate the following limit.

`lim_(x -> 0) ((x+1)^5 - 1)/x`

Sum

Solution

`lim_(x → 0)((x + 1)^5 - 1)/x`

= `lim_(x → 0)((1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5) - 1)/x`

= `lim_(x → 0) (x(5 + 10x + 10x^2 + 5x^3 + x^4))/x`

= `lim_(x → 0)(5 + 10x + 10x^2 + 5x^3 + x^4)`

= 5

Alternative method: We know:

`lim_(x → a)(x^n - 1)/(x - 1) = na^(n - 1)`

`lim_(x → 0) ((x + 1)^5 - 1)/x`

= `lim_(x → 0) ((x + 1)^5 - 1)/((x + 1) - 1)`

= `lim_(x → 0) 5(x + 1)^4`

= 5

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise 13.1 [Page 301]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise 13.1 | Q 6 | Page 301
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×