Advertisements
Advertisements
Question
Evaluate the following limit.
`lim_(x -> 3) (x^4 - 81)/(2x^2-5x - 3)`
Solution
`lim_(x → 3) (x^4 - 81)/(2x^2 - 5x - 3)`
= `lim_(x → 3) ((x - 3) (x + 3) (x^2 + 9))/((x - 3) (2x + 1))`
= `lim_(x → 3) ((x + 3) (x^2 + 9))/(2x + 1)`
= `((3 + 3) (9 + 9))/(6 + 1)`
= `(6 xx 18)/7`
= `108/7`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x -> 3) x + 3`
Evaluate the following limit.
`lim_(x -> pi) (x - 22/7)`
Evaluate the following limit:
`lim_(r -> l) pir^2`
Evaluate the following limit.
`lim_(x -> 4) (4x + 3)/(x - 2)`
Evaluate the following limit.
`lim_(x-> -1) (x^10 + x^5 +1)/(x -1)`
Evaluate the following limit.
`lim_(x -> 0) ((x+1)^5 - 1)/x`
Evaluate the following limit.
`lim_(x- > 2) (3x^2 - x - 10)/(x^2- 4)`
Evaluate the following limit.
`lim_(x-> 0) (ax + b)/(cx + 1)`
Evaluate the following limit.
`lim_(z -> 1) (z^(1/3) - 1)/(z^(1/6) -1)`
Evaluate the following limit.
`lim_(x -> 1) (ax^2 + bx + c)/(cx^2 + bx + a), a+b+c != 0`
Evaluate the following limit.
`lim_(x -> -2) (1/x + 1/2)/(x + 2)`
Evaluate the following limit.
`lim_(x -> 0) (sin ax)/ (bx)`
Evaluate the following limit.
`lim_(x -> 0) (sin ax)/(sin bx), a, b != 0`