English

Evaluate the following limit. limx→0sinaxsinbx,a,b≠0 - Mathematics

Advertisements
Advertisements

Question

Evaluate the following limit.

`lim_(x -> 0) (sin ax)/(sin bx), a, b != 0`

Sum

Solution

`lim_(x -> 0) (sin ax)/(sin bx), a, b != 0`

At x = 0, the value of the given function takes the form `0/0`.

Now, `lim_(x → 0) (sinax)/(sin bx)` = `lim_(x → 0) (((sinax)/(ax)) xx ax)/(((sinbx)/(bx)) xx bx)`

= `(a/b) xx (lim_(ax → 0) ((sinax)/(ax)))/(lim_(bx → 0) ((sinbx)/(bx)))`           `[("x"-> 0 =>ax ->0),("and"  x-> 0 => bx -> 0)]`

= `(a/b) xx 1/1`       `[lim_(y->0) (siny)/y = 1)]`

= `a/b`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise 13.1 [Page 301]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise 13.1 | Q 14 | Page 301
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×