Advertisements
Advertisements
Question
Evaluate the following limit.
`lim_(x -> 0) (sin ax)/(sin bx), a, b != 0`
Solution
`lim_(x -> 0) (sin ax)/(sin bx), a, b != 0`
At x = 0, the value of the given function takes the form `0/0`.
Now, `lim_(x → 0) (sinax)/(sin bx)` = `lim_(x → 0) (((sinax)/(ax)) xx ax)/(((sinbx)/(bx)) xx bx)`
= `(a/b) xx (lim_(ax → 0) ((sinax)/(ax)))/(lim_(bx → 0) ((sinbx)/(bx)))` `[("x"-> 0 =>ax ->0),("and" x-> 0 => bx -> 0)]`
= `(a/b) xx 1/1` `[lim_(y->0) (siny)/y = 1)]`
= `a/b`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x -> 3) x + 3`
Evaluate the following limit.
`lim_(x -> pi) (x - 22/7)`
Evaluate the following limit:
`lim_(r -> l) pir^2`
Evaluate the following limit.
`lim_(x -> 4) (4x + 3)/(x - 2)`
Evaluate the following limit.
`lim_(x-> -1) (x^10 + x^5 +1)/(x -1)`
Evaluate the following limit.
`lim_(x -> 0) ((x+1)^5 - 1)/x`
Evaluate the following limit.
`lim_(x- > 2) (3x^2 - x - 10)/(x^2- 4)`
Evaluate the following limit.
`lim_(x -> 3) (x^4 - 81)/(2x^2-5x - 3)`
Evaluate the following limit.
`lim_(x-> 0) (ax + b)/(cx + 1)`
Evaluate the following limit.
`lim_(z -> 1) (z^(1/3) - 1)/(z^(1/6) -1)`
Evaluate the following limit.
`lim_(x -> 1) (ax^2 + bx + c)/(cx^2 + bx + a), a+b+c != 0`
Evaluate the following limit.
`lim_(x -> -2) (1/x + 1/2)/(x + 2)`
Evaluate the following limit.
`lim_(x -> 0) (sin ax)/ (bx)`