Advertisements
Advertisements
प्रश्न
Evaluate the following :
`lim_(x -> ∞) [((2x - 1)^20 (3x - 1)^30)/(2x + 1)^50]`
उत्तर
Let L = `lim_(x -> ∞) [((2x - 1)^20 (3x - 1)^30)/(2x + 1)^50]`
Dividing numerator and denominator by x50, we get,
L = `lim_(x -> ∞) ((2x - 1)^20/x^20 xx (3x - 1)^30/x^30)/((2x + 1)^50/x^50`
= `lim_(x -> ∞) (((2x - 1)/x)^20 xx ((3x - 1)/x)^30)/((2x + 1)/x)^50`
= `lim_(x -> ∞) ((2 - 1/x)^20 xx (3 - 1/x)^30)/(2 + 1/x)^50`
= `([lim_(x -> ∞) (2 - 1/x)^20] xx [lim_(x -> ∞) (3 - 1/x)^30])/(lim_(x ->∞) (2 + 1/x)^50`
= `((2 - 0)^20 (3 - 0)^30)/(2 + 0)^50 ...[because lim_(x -> ∞) 1/x = 0]`
= `(2^20 xx 3^30)/(2^50)`
= `(3/2)^30`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
`lim_(x -> ∞) [("a"x^3 + "b"x^2 + "c"x + "d")/("e"x^3 + "f"x^2 + "g"x + "h")]`
Evaluate the following :
`lim_(x -> ∞) [(x^3 + 3x + 2)/((x + 4)(x - 6)(x - 3))]`
Evaluate the following :
`lim_(x -> ∞) [(7x^2 + 5x - 3)/(8x^2 - 2x + 7)]`
Evaluate the following :
`lim_(x -> ∞) [(7x^2 + 2x - 3)/(sqrt(x^4 + x + 2))]`
Evaluate the following :
`lim_(x -> ∞) [sqrt(x^2 + 4x + 16) - sqrt(x^2 + 16)]`
Evaluate the following :
`lim_(x -> ∞) [sqrt(x^4 + 4x^2) - x^2]`
Evaluate the following :
`lim_(x -> ∞) [((3x^2 + 4)(4x^2 - 6)(5x^2 + 2))/(4x^6 + 2x^4 - 1)]`
Evaluate the following :
`lim_(x -> ∞) [((3x - 4)^3 (4x + 3)^4)/(3x + 2)^7]`
Evaluate the following :
`lim_(x -> ∞) [sqrt(x)(sqrt(x + 1) - sqrt(x))]`
Evaluate the following :
`lim_(x -> ∞) [(sqrt(x^2 + 5) - sqrt(x^2 - 3))/(sqrt(x^2 + 3) - sqrt(x^2 + 1))]`
Select the correct answer from the given alternatives.
`lim_(x -> ∞) [((2x + 3)^7 (x - 5)^3)/(2x - 5)^10]` =
Evaluate the following :
`lim_(x -> ∞) [((2x + 1)^2*(7x - 3)^3)/(5x + 2)^5]`
Evaluate the following :
`lim_(x -> ∞) [(8x^2 + 5x + 3)/(2x^2 - 7x - 5)]^((4x + 3)/(8x - 1))`