मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Explain de-Broglie wavelength. - Physics

Advertisements
Advertisements

प्रश्न

Explain de-Broglie wavelength.

थोडक्यात उत्तर

उत्तर

The wavelength that is associated with an object in relation to its momentum and mass is known as the de-Broglie wavelength.

de-Broglie equated the energy equation of Plank (wave nature) and Einstein (particle nature) such that,

E = hv   (Plank energy relation)

E = mc2   (Einsteins mass-energy relation)

shaalaa.com
De Broglie Hypothesis
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (March) Set 1

संबंधित प्रश्‍न

An electron, a proton, an α-particle, and a hydrogen atom are moving with the same kinetic energy. The associated de Broglie wavelength will be longest for ______.


State the importance of Davisson and Germer experiment.


Explain what you understand by the de Broglie wavelength of an electron. Will an electron at rest have an associated de Broglie wavelength? Justify your answer.


The de Broglie wavelengths associated with an electron and a proton are the same. What will be the ratio of (i) their momenta (ii) their kinetic energies?


According to De-Broglie, the waves are associated with ______ 


Calculate De Broglie's wavelength of the bullet moving with speed 90m/sec and having a mass of 5 gm. 


The momentum of a photon of energy 1 MeV in kg m/s will be ______


An electron of mass m and a photon have same energy E. The ratio of de-Broglie wavelengths associated with them is ( c being velocity of light) ______.


A particle of charge q, mass m and energy E has de-Broglie wavelength `lambda.` For a particle of charge 2q, mass 2m and energy 2E, the de-Broglie wavelength is ____________.


How much energy is imparted to an electron so that its de-Broglie wavelength reduces from 10-10 m to 0.5 × 10-10 m? (E =energy of electron)


The wavelength '`lambda`' of a photon and de-Broglie wavelength of an electron have same value. The ratio of energy of a photon to kinetic energy of electron is (m = mass of electron, c = velocity of light, h = Planck's constant) ____________.


If the kinetic energy of a particle is increased to 16 times its previous value, the percentage change in the de-Broglie wavelength of the particle is ____________.


Graph shows the variation of de-Broglie wavelength `(lambda)` versus `1/sqrt"V"`, where 'V' is the accelerating potential for four particles carrying same charge but of masses m1 , m2, m3, m4. Which particle has a smaller mass?


If the potential difference used to accelerate electrons is doubled, by what factor does the de-Broglie wavelength associated with the electrons change?


A photon of wavelength 3315 Å falls on a photocathode and an electron of energy 3 x 10-19 J is ejected. The threshold wavelength of photon is [Planck's constant (h) = 6.63 x 10-34 J.s, velocity of light (c) = 3 x 108 m/s] ____________.


Obtain an expression for de-Broglie wavelength of wave associated with material particles. The photoelectric work function for metal is 4.2 eV. Find the threshold wavelength.


A proton, a neutron, an electron and an α-particle have same energy. λp, λn, λe and λα are the de Broglie's wavelengths of proton, neutron, electron and α particle respectively, then choose the correct relation from the following :


The energy of an electron having de-Broglie wavelength `λ` is ______.

(h = Plank's constant, m = mass of electron)


An electron of mass m has de-Broglie wavelength λ when accelerated through potential difference V. When proton of mass M, is accelerated through potential difference 9V, the de-Broglie wavelength associated with it will be ______. (Assume that wavelength is determined at low voltage)


Calculate the de Broglie wavelength associated with an electron moving with a speed of `5 xx 10^6` m/s. `(m_e = 9.1 xx 10^(-31)kg)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×