Advertisements
Advertisements
प्रश्न
Express the following equations in matrix form and solve them by method of reduction.
x + y + z = 1, 2x + 3y + 2z = 2 and x + y + 2z = 4
उत्तर
Matrix form of the given system of equations is
`[(1, 1, 1),(2, 3, 2),(1, 1, 2)][(x), (y), (z)] = [(1), (2), (4)]`
This is of the for AX = B,
where A = `[(1, 1, 1),(2, 3, 2),(1, 1, 2)]`, X = `[(x), (y), (z)]` and B = `[(1), (2), (4)]`
Applying R2 → R2 – 2R1 and R3 – R1, we get
`[(1, 1, 1),(0, 1, 0),(0, 0, 1)][(x), (y), (z)] = [(1), (0), (3)]`
Hence, the original matrix A is reduced to an upper triangular matrix.
∴ `[(x + y + z),(0 + y + 0),(0 + 0 + z)] = [(1), (0), (3)]`
∴ By equality of martices, we get
x + y + z = 1 ...(i)
y = 0
z = 3
Substituting y = 0 and z = 3 in equation (i), we get
x + 0 + 3 = 1
∴ x = 1 – 3 = – 2
∴ x = –2, y = 0 and z = 3 is the required solution.
संबंधित प्रश्न
Solve the following equations by inversion method.
x + 2y = 2, 2x + 3y = 3
Solve the following equations by the reduction method.
2x + y = 5, 3x + 5y = – 3
Solve the following equations by the reduction method.
3x – y = 1, 4x + y = 6
Solve the following equations by the method of inversion:
x + y + z = - 1, y + z = 2, x + y - z = 3
Express the following equations in matrix form and solve them by the method of reduction:
x - y + z = 1, 2x - y = 1, 3x + 3y - 4z = 2
Express the following equations in matrix form and solve them by the method of reduction:
`x + y = 1, y + z = 5/3, z + x 4/33`.
Express the following equations in matrix form and solve them by the method of reduction:
x + 2y + z = 8, 2x + 3y - z = 11, 3x - y - 2z = 5.
The cost of 4 pencils, 3 pens, and 2 books is ₹ 150. The cost of 1 pencil, 2 pens, and 3 books is ₹ 125. The cost of 6 pencils, 2 pens, and 3 books is ₹ 175. Find the cost of each item by using matrices.
An amount of ₹ 5000 is invested in three types of investments, at interest rates 6%, 7%, 8% per annum respectively. The total annual income from these investments is ₹ 350. If the total annual income from the first two investments is ₹ 70 more than the income from the third, find the amount of each investment using matrix method.
Express the following equations in matrix form and solve them by the method of reduction:
x + 3y + 2z = 6,
3x − 2y + 5z = 5,
2x − 3y + 6z = 7
Solve the following equations by method of inversion.
x + y + z = 1, x – y + z = 2 and x + y – z = 3
Express the following equations in matrix form and solve them by method of reduction.
x + 3y = 2, 3x + 5y = 4
Express the following equations in matrix form and solve them by method of reduction.
3x – y = 1, 4x + y = 6
The sum of the cost of one Economic book, one Co-operation book and one account book is ₹ 420. The total cost of an Economic book, 2 Co-operation books and an Account book is ₹ 480. Also the total cost of an Economic book, 3 Co-operation books and 2 Account books is ₹ 600. Find the cost of each book using matrix method.
If x + y + z = 3, x + 2y + 3z = 4, x + 4y + 9z = 6, then (y, z) = _______
Find x, y, z, if `{5[(0, 1),(1, 0),(1, 1)] - [(2, 1),(3, - 2),(1, 3)]} [(2),(1)] = [(x - 1),(y + 1),(2z)]`
Solve the following :
Two farmers Shantaram and Kantaram cultivate three crops rice, wheat and groundnut. The sale (in Rupees) of these crops by both the farmers for the month of April and May 2016 is given below,
April 2016 (in ₹.) | |||
Rice | Wheat | Groundnut | |
Shantaram | 15000 | 13000 | 12000 |
Kantaram | 18000 | 15000 | 8000 |
May 2016 (in ₹.) | |||
Rice | Wheat | Groundnut | |
Shantaram | 18000 | 15000 | 12000 |
Kantaram | 21000 | 16500 | 16000 |
Find : the increase in sale from April to May for every crop of each farmer.
Solve the following equations by method of inversion : x – y + z = 4, 2x + y – 3z = 0 , x + y + z = 2
Solve the following equations by method of reduction :
x + 2y - z = 3 , 3x – y + 2z = 1 and 2x – 3y + 3z = 2
Solve the following equations by method of reduction :
x – 3y + z = 2 , 3x + y + z = 1 and 5x + y + 3z = 3
The sum of three numbers is 6. If we multiply third number by 3 and add it to the second number we get 11. By adding the first and third number we get a number which is double the second number. Use this information and find a system of linear equations. Find the three numbers using matrices.
If A2 + 5A + 3I = 0, |A| ≠ 0, then A–1 = ______
State whether the following statement is True or False:
If O(A) = m × n and O(B) = n × p with m ≠ p, then BA exists but AB does not exist.
If A = `[(1, -1, 3), (2, 5, 4)]`, then R1 ↔ R2 and C3 → C3 + 2C2 gives ______
If `[(1, -1, x), (1, x, 1), (x, -1, 1)]` has no inverse, then the real value of x is ______
If A =`[(1, -1), (2, 3)]` and adj (A) = `[(a, b), (-2, 1)]`, then ______
Solve the following system of equations by the method of inversion.
x – y + z = 4, 2x + y – 3z = 0, x + y + z = 2