Advertisements
Advertisements
प्रश्न
f(x) = x4 − 3x2 + 4, g(x) = x − 2
उत्तर
Let us denote the given polynomials as
`f(x) = x^4 - 3x^2 + 4,`
`g(x) = x-2`
We have to find the remainder when f(x) is divided by g(x).
By the remainder theorem, when f(x)is divided by g(x) the remainder is
`f(2) = (2)^4 - 3 (2)^2 + 4`
` = 16 - 12 + 4`
` = 8`
We will calculate remainder by actual division
So the remainder is 8
APPEARS IN
संबंधित प्रश्न
Identify polynomials in the following:
`g(x)=2x^3-3x^2+sqrtx-1`
If `f(x) = 2x^2 - 13x^2 + 17x + 12` find f(2)
If `f(x)=2x^2-13x^2+17x+12` find `f-(3)`
The polynomials ax3 + 3x2 − 3 and 2x3 − 5x + a when divided by (x − 4) leave the remainders R1 and R2 respectively. Find the values of the following cases, if 2R1 − R2 = 0.
2x4 − 7x3 − 13x2 + 63x − 45
If x51 + 51 is divided by x + 1, the remainder is
When x3 − 2x2 + ax − b is divided by x2 − 2x − 3, the remainder is x − 6. The values of a and b are respectively
Factorise the following:
t² + 72 – 17t
(x + y)(x2 – xy + y2) is equal to
Factorise:
x3 + x2 – 4x – 4