Advertisements
Advertisements
प्रश्न
If `z=tan(y-ax)+(y-ax)^(3/2)` then show that `(del^2z)/(delx^2)= a^2 (del^2z)/(dely^2)`
उत्तर
`z=tan(y-ax)+(y-ax)^(3/2)`
Differentiate partially w.r.t.x, `(delz)/(delx)=sec^2 (y+ax).a+3/2(y-ax)^(1/2).(-a)`
∴ `(delz)/(delx)=alpha sec^2(y+ax)-(3a)/2(y-ax)^(1/2)`
Again, differentiate partially w.r.t.x,
`(del^2z)/(delx^2)=alpha^2[2sec^2(y+ax)tan(y+ax)-3/4(y-ax)^2]`
Differentiate (1) partially w.r.t.y, `(delz)/(dely)=sec^2(y+ax).1+3/2(y-ax)^(1/2)`
Again, differentiate partially w.r.t.y, `(del^2z)/(dely^2)=2sec^2(y+ax).tan(y)+ax-3/4(y-ax)^(-1/2)`
From (2)&(3), `(del^2z)/(delx^2)=a^2 (del^2z)/(dely^2)`
shaalaa.com
Partial Derivatives of First and Higher Order
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?