Advertisements
Advertisements
प्रश्न
If `u=e^(xyz)f((xy)/z)` where `f((xy)/z)` is an arbitrary function of `(xy)/z.`
Prove that: `x(delu)/(delx)+z(delu)/(delz)=y(delu)/(dely)+z(delu)/(delz)=2xyz.u`
बेरीज
उत्तर
Let `(xy)/z=w` `therefore u=e^(xyz)f(w)`
Diff. u w.r.t. x partially,
`(delu)/(delx)=e^(xyz)f'(w)+f(w).e^(xyz).yz`
Diff. u w.r.t y partially ,
`(delu)/(dely)=e^(xyz)f'(w)+f(w).e^(xyz).yz`
Diff. u w.r.t y partially,
`(delu)/(delz)=e^(xyz)f'(w)+f(w).e^(xyz).xy`
`x(delu)/(delx)+z(delu)/(delz)=xe^(xyz)f'(w)+f(w).e^(xyz).xyz+ze^(xyz)f'(w)+f(w).e^(xyz).xyz`...(1)
`y(delu)/(dely)+z(delu)/(delz)=ye^(xyz)f'(w)+f(w).e^(xyz).xyz+ze^(xyz)f'(w)+f(w).e^(xyz).xyz`...(2)
From (1) and (2),
`x(delu)/(delx)+z(delu)/(delz)=y(delu)/(dely)+z(delu)/(delz)=2xyz.u`
Hence Proved.
shaalaa.com
Partial Derivatives of First and Higher Order
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?