Advertisements
Advertisements
प्रश्न
Factorise : 25(2a - b)2 - 81b2
उत्तर
25(2a - b)2 - 81b2
= [ 5( 2a - b )]2 - (9b)2
= [ 5( 2a - b ) - 9b ][ 5( 2a - b ) + 9b ]
[ ∵ a2 - b2 = ( a + b )( a - b )]
= [ 10a - 5b - 9b ][ 10a - 5b + 9b ]
= [ 10a - 14b ][ 10a + 4b ]
= 2 x ( 5a - 7b ) x 2 x ( 5a + 2b )
= 4( 5a - 7b )( 5a + 2b )
APPEARS IN
संबंधित प्रश्न
Factorise : a2 - 81 (b-c)2
Factorise : 9a2 + 3a - 8b - 64b2
Factorise : a2 + b2 - c2 - d2 + 2ab - 2cd
Factorise:
(a2 - 1) (b2 - 1) + 4ab
Factorise : (x2 + 4y2 - 9z2)2 - 16x2y2
Factorise : `x^2 + 1/x^2 - 11`
Factorise : `4x^2 + 1/(4x)^2 + 1`
Factorise : a2 ( b + c) - (b + c)3
Factorise the following by the difference of two squares:
16a4 - 81b4
Express each of the following as the difference of two squares:
(x2 + 2x - 3) (x2 - 2x + 3)