Advertisements
Advertisements
प्रश्न
Factorise the following:
(t2 - t)(4t2 - 4t - 5) - 6
उत्तर
(t2 - t)(4t2 - 4t - 5) - 6
= (t2 - t)[4(t2 - t) - 5] - 6
= a[4a - 5] - 6 [Taking (t2 - t) = a]
= 4a2 - 5a - 6
= 4a2 - 8a + 3a - 6
= 4a(a - 2) + 3(a - 2)
= (a - 2)(4a + 3)
= (t2 - t - 2)[4(t2 - t) + 3]
= (t2 - 2t + t - 2)(4t2 - 4t + 3)
= [t(t - 2) + 1(t - 2)](4t2 - 4t + 3)
= [(t - 2)(t + 1)](4t2 - 4t + 3)
= (t + 1)(t - 2)(4t2 - 4t + 3).
APPEARS IN
संबंधित प्रश्न
Factorise.
44x2 − x − 3
Factorise : 24a3 + 37a2 - 5a
Factorise : 1 - 2a - 2b - 3 (a + b)2
Factorise the following by splitting the middle term:
p2- 12p - 64
Factorise the following by splitting the middle term:
7x2 + 40x - 12
Factorise the following:
(2p + q)2 - 10p - 5q - 6
Factorise the following:
7(x - 2)2 - 13(x - 2) - 2
Factorise the following:
(y2 - 3y)(y2 - 3y + 7) + 10
Factorise the following:
12(2x - 3y)2 - 2x + 3y - 1
Factorise: 2x2 + 5x - 18