Advertisements
Advertisements
Question
Factorise the following:
(t2 - t)(4t2 - 4t - 5) - 6
Solution
(t2 - t)(4t2 - 4t - 5) - 6
= (t2 - t)[4(t2 - t) - 5] - 6
= a[4a - 5] - 6 [Taking (t2 - t) = a]
= 4a2 - 5a - 6
= 4a2 - 8a + 3a - 6
= 4a(a - 2) + 3(a - 2)
= (a - 2)(4a + 3)
= (t2 - t - 2)[4(t2 - t) + 3]
= (t2 - 2t + t - 2)(4t2 - 4t + 3)
= [t(t - 2) + 1(t - 2)](4t2 - 4t + 3)
= [(t - 2)(t + 1)](4t2 - 4t + 3)
= (t + 1)(t - 2)(4t2 - 4t + 3).
APPEARS IN
RELATED QUESTIONS
Factorise.
x2 + 9x + 18
Factorise.
44x2 − x − 3
Factorise : 1 - 2a - 2b - 3 (a + b)2
Factorise : 3a2 - 1 - 2a
Factorise : `1/35 + 12/35a + a^2`
Factorise : 4√3x2 + 5x - 2√3
Factorise the following by splitting the middle term:
x2 + 6x + 8
Factorise the following by splitting the middle term:
3x2 + 19x - 14
Factorise the following:
5 - 4(a - b) - 12(a - b)2
Factorise the following:
p4 + 23p2q2 + 90q4