Advertisements
Advertisements
Question
Factorise the following:
(y2 - 3y)(y2 - 3y + 7) + 10
Solution
(y2 - 3y)(y2 - 3y + 7) + 10
= a(a + 7) + 10 [taking (y2 - 3y) = a]
= a2 + 7a + 10
= a2 + 5a + 2a + 10
= a(a + 5) + 2(a + 5)
= (a + 5)(a + 2)
= (y2 - 3y + 5)(y2 - 3y + 2)
= (y2 - 3y + 5)(y2 - 2y - y + 2)
= (y2 - 3y + 5)[y(y - 2) - 1(y - 2)]
= (y2 - 3y + 5)[(y - 2)(y - 1)]
= (y - 1)(y - 2)(y2 - 3y + 5).
APPEARS IN
RELATED QUESTIONS
Factorise.
m2 − 25m + 100
Factorise : x2 - 3ax - 88a2
Factorise : 1 - 2a - 2b - 3 (a + b)2
Find trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise, if possible.
2x2 - 7x - 15
Find trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise, if possible.
3x2 + 4x - 10
Factorise : 7√2x2 - 10x - 4√2
Factorise the following by splitting the middle term:
p2- 12p - 64
Factorise the following:
5x2 - 17xy + 6y2
Factorise the following:
`6sqrt(3)x^2 - 19x + 5sqrt(3)`
Factorise: x2 - 10x + 21.