Advertisements
Advertisements
प्रश्न
Factorise the following:
(y2 - 3y)(y2 - 3y + 7) + 10
योग
उत्तर
(y2 - 3y)(y2 - 3y + 7) + 10
= a(a + 7) + 10 [taking (y2 - 3y) = a]
= a2 + 7a + 10
= a2 + 5a + 2a + 10
= a(a + 5) + 2(a + 5)
= (a + 5)(a + 2)
= (y2 - 3y + 5)(y2 - 3y + 2)
= (y2 - 3y + 5)(y2 - 2y - y + 2)
= (y2 - 3y + 5)[y(y - 2) - 1(y - 2)]
= (y2 - 3y + 5)[(y - 2)(y - 1)]
= (y - 1)(y - 2)(y2 - 3y + 5).
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Factorise.
p2 − 2p − 35
Factorise : a2b2 + 8ab - 9
Factorise:
(2a + b)2 - 6a - 3b - 4
Factorise : 4√3x2 + 5x - 2√3
Factorise the following:
5 - 4(a - b) - 12(a - b)2
Factorise the following:
(x + 4)2 - 5xy - 20y - 6y2
Factorise the following:
(t2 - t)(4t2 - 4t - 5) - 6
Factorise the following:
12(2x - 3y)2 - 2x + 3y - 1
Factorise the following:
`2x^2 + x/(6) - 1`
Factorise: 2x2 + 5x - 18