Advertisements
Advertisements
प्रश्न
Factorize a3 – 3a2b + 3ab2 – b3 + 8
उत्तर
a3 - 3a2b + 3ab2 - b3 + 8
= (a - b)3 + 8 [∵ a3 - b3 - 3a2b + 3ab2 = (a - b)3
= (a - b)3 + 23
= (a - b + 2)((a - b)2 - (a - b)2 + 22 ) [∵ a3 + b3 = (a + b)(a2 - ab + b2)]
= (a - b + 2)(a2 + b2 - 2ab - 2(a - b) + 4)
= (a - b + 2)(a2 + b2 - 2ab - 2a + 2b + 4)
∴ a3 - 3a2b + 3ab2 - b3 + 8 = (a - b + 2)(a2 + b2 - 2ab - 2a + 2b + 4)
APPEARS IN
संबंधित प्रश्न
Factorize: `a^2 x^2 + (ax^2 + 1)x + a`
Factorize the following expressions:
x3y3 + 1
The factors of x3 −x2y − xy2 + y3 are
Evaluate: (a2 + b2 + c2 - ab - bc - ca)(a + b + c)
Multiply: (xy + 2b)(xy - 2b)
Multiply: (2x + 5y + 6)(3x + y - 8)
Multiply: (3x - 5y + 2)(5x - 4y - 3)
Divide: 12x3y - 8x2y2 + 4x2y3 by 4xy
Divide: 9a4b - 15a3b2 + 12a2b3 by - 3a2b
Divide: m2 − 2mn + n2 by m − n