Advertisements
Advertisements
प्रश्न
Factorize a3 – 3a2b + 3ab2 – b3 + 8
उत्तर
a3 - 3a2b + 3ab2 - b3 + 8
= (a - b)3 + 8 [∵ a3 - b3 - 3a2b + 3ab2 = (a - b)3
= (a - b)3 + 23
= (a - b + 2)((a - b)2 - (a - b)2 + 22 ) [∵ a3 + b3 = (a + b)(a2 - ab + b2)]
= (a - b + 2)(a2 + b2 - 2ab - 2(a - b) + 4)
= (a - b + 2)(a2 + b2 - 2ab - 2a + 2b + 4)
∴ a3 - 3a2b + 3ab2 - b3 + 8 = (a - b + 2)(a2 + b2 - 2ab - 2a + 2b + 4)
APPEARS IN
संबंधित प्रश्न
Factorize `21x^2 - 2x + 1/21`
Factorize `5sqrt5x^2 + 20x + 3sqrt5`
Factorize the following expressions:
p3 + 27
Multiply: x2 + y2 + z2 − xy + xz + yz by x + y − z
Multiply: x2 + 4y2 + 2xy − 3x + 6y + 9 by x − 2y + 3
The factors of x3 − 1 + y3 + 3xy are
Separate monomials, binomials, trinomials and polynomials from the following algebraic expressions :
8 − 3x, xy2, 3y2 − 5y + 8, 9x − 3x2 + 15x3 − 7,
3x × 5y, 3x ÷ 5y, 2y ÷ 7 + 3x − 7 and 4 − ax2 + bx + y
Write the coefficient of x2 and x in the following polynomials
`x^2 - 7/2 x + 8`
Write the variables, constant and terms of the following expression
18 + x – y
If x = 2 and y = 3, then find the value of the following expressions
x + 1 – y