Advertisements
Advertisements
प्रश्न
Factorize of the following polynomials:
4x3 + 20x2 + 33x + 18 given that 2x + 3 is a factor.
उत्तर
Let ` f(x) = 4x^3 + 20x^2 + 33x+ 18` be the given polynomial.
Therefore (2x + 3)is a factor of the polynomial f(x).
Now,
`f(x)= 2x^2 (2x + 3)+7x(2x + 3) + 6(2x + 3)`
`=(2x + 3){2x^2 + 4x 3x + 6}`
`= (2x + 3){2x^2 + 4x + 3x + 6}`
` = (2x + 3)(2x + 3)(x + 2)`
Hence (x +2),(2x+3) and (2x + 3 ) are the factors of polynomial f(x).
APPEARS IN
संबंधित प्रश्न
Write the coefficient of x2 in the following:
`sqrt3x-7`
If `f(x)=2x^2-13x^2+17x+12` find `f(0)`
f(x) = 4x4 − 3x3 − 2x2 + x − 7, g(x) = x − 1
f(x) = x3 − 6x2 + 2x − 4, g(x) = 1 − 2x
If the polynomials 2x3 + ax2 + 3x − 5 and x3 + x2 − 4x +a leave the same remainder when divided by x −2, find the value of a.
The polynomials ax3 + 3x2 − 3 and 2x3 − 5x + a when divided by (x − 4) leave the remainders R1 and R2 respectively. Find the values of the following cases, if 2R1 − R2 = 0.
For what value of a is (x − 5) a factor of x3 − 3x2 + ax − 10?
x3 − 23x2 + 142x − 120
If \[x = \frac{1}{2}\] is a zero of the polynomial f(x) = 8x3 + ax2 − 4x + 2, find the value of a.
Factorise:
3x3 – x2 – 3x + 1