Advertisements
Advertisements
प्रश्न
Factorize of the following polynomials:
x3 + 13x2 + 31x − 45 given that x + 9 is a factor
उत्तर
Let f(x) = x3 + 13x2 + 31x − 45 be the given polynomial.
Therefore (x +9) is a factor of the polynomial f(x).
Now,
`f(x) = x^2(x + 9) + 4x (4x (x+9) -5) (x+ 9)`
`= (x+9){x^2 + 4x - 5}`
` = (x+9){x^2 + 5x - x - 5}`
`= (x+9)(x-1)(x+5)`
Hence ( x - 1),(x + 5) and (x + 9)are the factors of polynomial f(x).
APPEARS IN
संबंधित प्रश्न
Write the coefficient of x2 in the following:
`pi/6x^2- 3x+4`
f(x) = x3 − 6x2 + 2x − 4, g(x) = 1 − 2x
Show that (x + 4) , (x − 3) and (x − 7) are factors of x3 − 6x2 − 19x + 84
If x3 + ax2 − bx+ 10 is divisible by x2 − 3x + 2, find the values of a and b.
x3 − 6x2 + 3x + 10
x4 + 10x3 + 35x2 + 50x + 24
If x + 1 is a factor of the polynomial 2x2 + kx, then k =
Let f(x) be a polynomial such that \[f\left( - \frac{1}{2} \right)\] = 0, then a factor of f(x) is
Factorise the following:
`sqrt(5)"a"^2 + 2"a" - 3sqrt(5)`
Factorise:
2x3 – 3x2 – 17x + 30