Advertisements
Advertisements
प्रश्न
Find a linear approximation for the following functions at the indicated points.
f(x) = x3 – 5x + 12, x0 = 2
उत्तर
We know that the linear approximation
L(x) = f(x0) + f’(x0)(x – x0)
f(x) = x3 – 5x + 12
f'(x) = 3x2 – 5
f'(x0) = f'(2) = 12 – 5 = 7
f(x0) = f(2) = 8 – 10 + 12 = 10
L(x) = 10 + 7(x – 2)
= 10 + 7x – 14
= 7x – 4
APPEARS IN
संबंधित प्रश्न
Let f(x) = `root(3)(x)`. Find the linear approximation at x = 27. Use the linear approximation to approximate `root(3)(27.2)`
Use the linear approximation to find approximate values of `(123)^(2/3)`
Find a linear approximation for the following functions at the indicated points.
h(x) = `x/(x + 1), x_0` = 1
The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm. find the following in calculating the area of the circular plate:
Absolute error
A sphere is made of ice having radius 10 cm. Its radius decreases from 10 cm to 9.8 cm. Find approximations for the following:
Change in the surface area
The time T, taken for a complete oscillation of a single pendulum with length l, is given by the equation T = `2pi sqrt(l/g)` where g is a constant. Find the approximate percentage error in the calculated value of T corresponding to an error of 2 percent in the value of l
Find the differential dy for the following functions:
y = `(3 + sin(2x))^(2/3)`
Find Δf and df for the function f for the indicated values of x, Δx and compare:
f(x) = x2 + 2x + 3, x = – 0.5, Δx = dx = 0.1
Assuming log10 e = 0.4343, find an approximate value of Iog10 1003
Assume that the cross-section of the artery of human is circular. A drug is given to a patient to dilate his arteries. If the radius of an artery is increased from 2 mm to 2.1 mm, how much is cross-sectional area increased approximately?
A circular plate expands uniformly under the influence of heat. If its radius increases from 10.5 cm to 10.75 cm, then find an approximate change in the area and the approximate percentage change in the area
A coat of paint of thickness 0.2 cm is applied to the faces of cube whose edge is 10 cm. Use the differentials to find approximately how many cubic centimeters of paint is used to paint this cube. Also calculate the exact amount of paint used to paint this cube
Choose the correct alternative:
The percentage error of fifth root of 31 is approximately how many times the percentage error in 31?
Choose the correct alternative:
If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our calculation of the volume is
Choose the correct alternative:
The approximate change in volume V of a cube of side x meters caused by increasing the side by 1% is
Choose the correct alternative:
If f(x) = `x/(x + 1)`, then its differential is given by