рдорд░рд╛рдареА

Find the Area Inside the Circle R=A SinЁЭЬ╜ and Outside the Cardioide R=A(1+CosЁЭЬ╜ ) - Applied Mathematics 2

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Find the area inside the circle r=a sinЁЭЬ╜ and outside the cardioide r=a(1+cosЁЭЬ╜ )

рдмреЗрд░реАрдЬ

рдЙрддреНрддрд░

Intersection of cardioide and circle is,
r=a(1+cosЁЭЬ╜) and r=asinЁЭЬ╜

asinЁЭЬ╜ = a(1+cosЁЭЬ╜) => ЁЭЬ╜=ЁЭЯЧЁЭЯО°
a(1+cosЁЭЬ╜) ≤ r ≤ asinЁЭЬ╜

`pi/2`≤ ЁЭЬ╜ ≤ ЁЭЭЕ

Area of region bounded by given circle and cardioide ,

I = `int_(pi/2)^pi int_(asintheta)^(a(1+costheta)) rdrd theta`

`=int_(pi/2)^pi a^2/2(sin^2theta-1-2costheta-cos^2theta)d theta`

`=int_(pi/2)^pi a^2/2(-1-2costheta-cos^2theta)d theta`

`=a^2/a[-theta-2sintheta-(sin2theta)/2]_(pi/2)^pi`

I =`a^2/2[(-pi-0-0)-(-pi/2-2-0)]`

Required area is = I = `a^2/2(2-pi/2)`

shaalaa.com
Application of Double Integrals to Compute Area
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
2017-2018 (June) CBCGS
Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Course
Use app×