Advertisements
Advertisements
प्रश्न
Find the coordinates of the point P where the line through A (3, -4 , -5 ) and B (2, -3 , 1) crosses the plane passing through three points L(2,2,1), M(3,0,1) and N(4, -1,0 ) . Also, find the ratio in which P diveides the line segment AB.
उत्तर
Equation of the plane passing through the points L(2, 2, 1), M(3, 0, 1) and N(4, −1, 0) is
\[\left[ \vec{r} - \left( 2 \hat{i} + 2 \hat{j} + \hat{k} \right) \right] . \left[ \left( \hat{i} - 2 \hat{j} \right) \times \left( \hat{i} - \hat{j} - \hat{k} \right) \right] = 0\]
\[ \Rightarrow \left[ \vec{r} - \left( 2 \hat{i} + 2 \hat{j} + \hat{k} \right) \right] . \left( 2 \hat{i} + \hat{j} + \hat{k} \right) = 0\]
\[ \Rightarrow \vec{r} . \left( 2 \hat{i} + \hat{j} + \hat{k} \right) = \left( 2 \hat{i} + 2 \hat{j} + \hat{k} \right) . \left( 2 \hat{i} + \hat{j} + \hat{k} \right)\]
\[ \Rightarrow \vec{r} . \left( 2 \hat{i} + \hat{j} + \hat{k} \right) = 4 + 2 + 1 = 7 . . . . . \left( 1 \right)\]
The equation of line segment through A(3, −4, −5) and B(2, −3, 1) is
\[\frac{x - 3}{2 - 3} = \frac{y + 4}{- 3 + 4} = \frac{z + 5}{1 + 5}\]
\[i . e . \frac{x - 3}{- 1} = \frac{y + 4}{1} = \frac{z + 5}{6}\]
Any point on this line is of the form \[\left( - \lambda + 3, \lambda - 4, 6\lambda - 5 \right)\]
This point lies on the plane (1).
\[\therefore \left[ \left( - \lambda + 3 \right) \hat{i} + \left( \lambda - 4 \right) \hat{j} + \left( 6\lambda - 5 \right) \hat{k} \right] . \left( 2 \hat{i} + \hat{j} + \hat{k} \right) = 7\]
\[ \Rightarrow 2\left( - \lambda + 3 \right) + \left( \lambda - 4 \right) + \left( 6\lambda - 5 \right) = 7\]
\[ \Rightarrow 5\lambda = 10\]
\[ \Rightarrow \lambda = 2\]
Thus, the coordinates of the point P are (−2 + 3, 2 − 4, 6 × 2 − 5) i.e. (1, −2, 7).
Suppose P divides the line segment AB in the ratio μ : 1.
\[\therefore \left( 1, - 2, 7 \right) = \left( \frac{2\mu + 3}{\mu + 1}, \frac{- 3\mu - 4}{\mu + 1}, \frac{\mu - 5}{\mu + 1} \right)\]
\[ \Rightarrow \frac{2\mu + 3}{\mu + 1} = 1, \frac{- 3\mu - 4}{\mu + 1} = - 2, \frac{\mu - 5}{\mu + 1} = 7\]
\[ \Rightarrow 2\mu + 3 = \mu + 1, - 3\mu - 4 = - 2\mu - 2, \mu - 5 = 7\mu + 7\]
\[ \Rightarrow \mu = - 2\]
Thus, the point P divides the line segment AB externally in the ratio 2 : 1.
APPEARS IN
संबंधित प्रश्न
Find the equation of the plane passing through the following points.
(2, 1, 0), (3, −2, −2) and (3, 1, 7)
Find the equation of the plane passing through the following points.
(−5, 0, −6), (−3, 10, −9) and (−2, 6, −6)
Find the equation of the plane passing through the following points.
(2, 3, 4), (−3, 5, 1) and (4, −1, 2)
Find the equation of the plane passing through the following point
(0, −1, 0), (3, 3, 0) and (1, 1, 1)
Show that the following points are coplanar.
(0, −1, 0), (2, 1, −1), (1, 1, 1) and (3, 3, 0)
Show that the following points are coplanar.
(0, 4, 3), (−1, −5, −3), (−2, −2, 1) and (1, 1, −1)
Find the vector equations of the following planes in scalar product form \[\left( \vec{r} \cdot \vec{n} = d \right):\] \[\vec{r} = \left( 1 + s - t \right) \hat{t} + \left( 2 - s \right) \hat{j} + \left( 3 - 2s + 2t \right) \hat{k} \]
Find the vector equations of the following planes in scalar product form \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( \hat{i} + 2 \hat{j} - \hat{k} \right) + \mu\left( - \hat{i} + \hat{j} - 2 \hat{k} \right)\]
Find the vector equations of the following planes in scalar product form \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \hat{i} - \hat{j} + \lambda\left( \hat{i} + \hat{j} + \hat{k} \right) + \mu\left( 4 \hat{i} - 2 \hat{j} + 3 \hat{k} \right)\]
Find the Cartesian forms of the equations of the following planes. \[\vec{r} = \left( \hat{i} - \hat{j} \right) + s\left( - \hat{i} + \hat{j} + 2 \hat{k} \right) + t\left( \hat{i} + 2 \hat{j} + \hat{k} \right)\]
Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( \lambda - 2\mu \right) \hat{i} + \left( 3 - \mu \right) \hat{j} + \left( 2\lambda + \mu \right) \hat{k} \]
Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( 2 \hat{i} + 2 \hat{j} - \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \mu\left( 5 \hat{i} - 2 \hat{j} + 7 \hat{k} \right)\]
Find the equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2).
Find the equation of the plane passing through the line of intersection of the planes 2x − 7y + 4z − 3 = 0, 3x − 5y + 4z + 11 = 0 and the point (−2, 1, 3).
Find the equation of the plane passing through the points (3, 4, 1) and (0, 1, 0) and parallel to the line
Show that the lines \[\vec{r} = \left( 2 \hat{j} - 3 \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) \text{ and } \vec{r} = \left( 2 \hat{i} + 6 \hat{j} + 3 \hat{k} \right) + \mu\left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right)\] are coplanar. Also, find the equation of the plane containing them.
Show that the lines \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1} \text{ and }\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\] are coplanar. Also, find the equation of the plane containing them.
Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5}\] and \[\frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.
Show that the lines \[\frac{x + 3}{- 3} = \frac{y - 1}{1} = \frac{z - 5}{5}\] and \[\frac{x + 1}{- 1} = \frac{y - 2}{2} = \frac{z - 5}{5}\] are coplanar. Hence, find the equation of the plane containing these lines.
If the lines \[x =\] 5 , \[\frac{y}{3 - \alpha} = \frac{z}{- 2}\] and \[x = \alpha\] \[\frac{y}{- 1} = \frac{z}{2 - \alpha}\] are coplanar, find the values of \[\alpha\].
The points (1, 2, 3), (–2, 3, 4) and (7, 0, 1) are collinear.
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).