Advertisements
Advertisements
प्रश्न
Find the mean of each of the following frequency distributions
Class interval | 0 - 6 | 6 - 12 | 12 - 18 | 18 - 24 | 24 - 30 |
Frequency | 7 | 5 | 10 | 12 | 6 |
उत्तर
Let the assume mean A = 15
Class interval |
Mid-value(x1) | d1 = x1 - 15 | `"u"_1=(x_1-15)/6` | Frequency(f1) | f1u1 |
0 - 6 | 3 | -12 | -2 | 7 | -14 |
6 - 12 | 9 | -6 | -1 | 5 | -5 |
12 - 18 | 15 | 0 | 0 | 10 | 0 |
18 - 24 | 21 | 6 | 1 | 12 | 12 |
24 - 30 | 27 | 12 | 2 | 6 | 12 |
N = 40 | `sumf_1"u"_1=5` |
We have
A = 15 h = 6
Mean `=A+hxx(sumf_1"u"_1)/N`
`=15+6xx5/40`
`=15+30/40`
= 15 + 0.75
= 15.75
APPEARS IN
संबंधित प्रश्न
Find the value of p for the following distribution whose mean is 16.6
x | 8 | 12 | 15 | P | 20 | 25 | 30 |
f | 12 | 16 | 20 | 24 | 16 | 8 | 4 |
For the following distribution, calculate mean using all suitable methods:
Size of item | 1 - 4 | 4 - 9 | 9 - 16 | 16 - 27 |
Frequency | 6 | 12 | 26 | 20 |
The mean of following frequency distribution is 54. Find the value of p.
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 |
Frequency | 7 | p | 10 | 9 | 13 |
In an annual examination, marks (out of 90) obtained by students of Class X in mathematics are given below:
Marks Obtained |
0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
Number of students |
2 | 4 | 5 | 20 | 9 | 10 |
Find the mean marks.
If for certain frequency distribution, Median = 156 and Mode = 180, Find the value of the Mean.
The measurements (in mm) of the diameters of the head of the screws are given below :
Diameter (in mm) | no. of screws |
33 - 35 | 9 |
36 - 38 | 21 |
39 - 41 | 30 |
42 - 44 | 22 |
45 - 47 | 18 |
Calculate the mean diameter of the head of a screw by the ' Assumed Mean Method'.
If the mean of observations x1, x2, x3, ....xn is `barx,` then the mean of new observations x1 + a, x2 + a, x3 + a, ........ xn + a is?
Find the mean of the distribution:
Class | 1 – 3 | 3 – 5 | 5 – 7 | 7 – 10 |
Frequency | 9 | 22 | 27 | 17 |
The following table gives the number of pages written by Sarika for completing her own book for 30 days:
Number of pages written per day |
16 – 18 | 19 – 21 | 22 – 24 | 25 – 27 | 28 – 30 |
Number of days | 1 | 3 | 4 | 9 | 13 |
Find the mean number of pages written per day.
An analysis of particular information is given in the following table.
Age Group | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency | 2 | 5 | 6 | 5 | 2 |
For this data, mode = median = 25. Calculate the mean. Observing the given frequency distribution and values of the central tendency interpret your observation.