Advertisements
Advertisements
प्रश्न
The measurements (in mm) of the diameters of the head of the screws are given below :
Diameter (in mm) | no. of screws |
33 - 35 | 9 |
36 - 38 | 21 |
39 - 41 | 30 |
42 - 44 | 22 |
45 - 47 | 18 |
Calculate the mean diameter of the head of a screw by the ' Assumed Mean Method'.
उत्तर
Let A = 40
Diameter (in mm) | Class Mark (X) |
d = X - A | no. of screws | f d |
33 - 35 | 34 | -6 | 9 | -54 |
36 - 38 | 37 | -3 | 21 | -63 |
39 - 41 | 40 | 0 | 30 | 0 |
42 - 44 | 43 | 3 | 22 | 66 |
45 - 47 | 46 | 6 | 18 | 108 |
∑ f =100 | ∑fd = 57 |
`bar"d" = (∑"f""d")/(∑ "f") = 57/100=0.57`
Mean by Assumed Mean Method
`bar"x" = "A" + bar"d"`
=40 + 0.57
= 40.57 mm
APPEARS IN
संबंधित प्रश्न
A survey was conducted by a group of students as a part of their environment awareness programme, in which they collected the following data regarding the number of plants in 20 houses in a locality. Find the mean number of plants per house.
Number of plants | 0 - 2 | 2 - 4 | 4 - 6 | 6 - 8 | 8 - 10 | 10 - 12 | 12 - 14 |
Number of houses | 1 | 2 | 1 | 5 | 6 | 2 | 3 |
Which method did you use for finding the mean, and why?
Find the missing frequencies in the following frequency distribution if it is known that the mean of the distribution is 50.
x | 10 | 30 | 50 | 70 | 90 | |
f | 17 | f1 | 32 | f2 | 19 | Total 120 |
The following distribution shows the daily pocket allowance given to the children of a multistorey building. The average pocket allowance is Rs 18.00. Find out the missing frequency.
Class interval | 11 - 13 | 13 - 15 | 15 - 17 | 17 - 19 | 19 - 21 | 21 - 23 | 23 - 25 |
Frequency | 7 | 6 | 9 | 13 | - | 5 | 4 |
Weight of 60 eggs were recorded as given below:
Weight (in grams) | 75 – 79 | 80 – 84 | 85 – 89 | 90 – 94 | 95 – 99 | 100 - 104 | 105 - 109 |
No. of eggs | 4 | 9 | 13 | 17 | 12 | 3 | 2 |
Calculate their mean weight to the nearest gram.
The following table shows the marks scored by 80 students in an examination:
Marks | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 | 35 – 40 |
No. of students |
3 | 10 | 25 | 49 | 65 | 73 | 78 | 80 |
Define mean.
The mean of n observation is `overlineX` .f the first item is increased by 1, second by 2 and so on, then the new mean is
The mean of n observation is `overlineX` . If the first item is increased by 1, second by 2 and so on, then the new mean is
The mean of first n odd natural numbers is \[\frac{n^2}{81}\],then n =
Mean of a certain number of observation is `overlineX`. If each observation is divided by m(m ≠ 0) and increased by n, then the mean of new observation is
In the formula
If for certain frequency distribution, Median = 156 and Mode = 180, Find the value of the Mean.
The average score of boys in an examination of a school is 71 and of girls is 73. The averages score of school in that examination is 71.8. Find the ratio of the number of boys between number of girls appeared in the examination.
Find the mean wage of a worker from the following data:
Wages (In ₹) | 1400 | 1450 | 1500 | 1550 | 1600 | 1650 | 1700 |
Number of workers | 15 | 20 | 18 | 27 | 15 | 3 | 2 |
The marks obtained by a set of students in an examination all given below:
Marks | 5 | 10 | 15 | 20 | 25 | 30 |
Number of students | 6 | 4 | 6 | 12 | x | 4 |
Given that the mean marks of the set of students is 18, Calculate the numerical value of x.
If mean = (3median - mode) . k, then the value of k is ______.
If xi’s are the midpoints of the class intervals of grouped data, fi’s are the corresponding frequencies and `barx` is the mean, then `sum(f_ix_i - barx)` is equal to ______.
In the formula `barx = a + h((sumf_iu_i)/(sumf_i))`, for finding the mean of grouped frequency distribution, ui = ______.
An aircraft has 120 passenger seats. The number of seats occupied during 100 flights is given in the following table:
Number of seats | 100 – 104 | 104 – 108 | 108 – 112 | 112 – 116 | 116 – 120 |
Frequency | 15 | 20 | 32 | 18 | 15 |
Find the mean of the following frequency distribution:
Class | 1 – 5 | 5 – 9 | 9 – 13 | 13 – 17 |
Frequency | 4 | 8 | 7 | 6 |