मराठी

If Each Observation is Divided by M(M ≠ 0) and Increased by N, Then the Mean of New Observation is - Mathematics

Advertisements
Advertisements

प्रश्न

Mean of a certain number of observation is `overlineX`.  If each observation is divided by m(m ≠ 0) and increased by n, then the mean of new observation is

पर्याय

  • `overlineX/m +n`

  • `overlineX/n+m`

     

  • `overlineX +n/m`

  • `overlineX +m/n`

MCQ

उत्तर

Let

\[y_1 , y_2 , y_3 , . . . , y_k\]

 be k observations.
Mean of the observations = `overlineX`

\[\Rightarrow \frac{y_1 + y_2 + y_3 + . . . + y_k}{k} = x\]

\[ \Rightarrow y_1 + y_2 + y_3 + . . . + y_k = kx . . . . . \left( 1 \right)\]

If each observation is divided by m and increased by n, then the new observations are

\[\frac{y_1}{m} + n, \frac{y_2}{m} + n, \frac{y_3}{m} + n, . . . , \frac{y_k}{m} + n\]

∴ Mean of new observations

\[= \frac{\left( \frac{y_1}{m} + n \right) + \left( \frac{y_2}{m} + n \right) + . . . + \left( \frac{y_k}{m} + n \right)}{k}\]

\[ = \frac{\left( \frac{y_1}{m} + \frac{y_2}{m} + . . . + \frac{y_k}{m} \right) + \left( n + n + . . . + n \right)}{k}\]

\[ = \frac{y_1 + y_2 + . . . + y_k}{mk} + \frac{nk}{k}\]

`(koverlineX)/mk + (nk)/k`

\[ = \fr

`overlineX/m +n`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Statistics - Exercise 15.8 [पृष्ठ ६८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 15 Statistics
Exercise 15.8 | Q 33 | पृष्ठ ६८

संबंधित प्रश्‍न

The table below shows the daily expenditure on food of 25 households in a locality.

Daily expenditure (in Rs) 100 − 150 150 − 200 200 − 250 250 − 300 300 − 350
Number of households 4 5 12 2 2

Find the mean daily expenditure on food by a suitable method.


The following table gives the number of children of 150 families in a village. Find the average number of children per family.

No. of children (x) 0 1 2 3 4 5
No. of families (f) 10 21 55 42 15 7

Find the mean of each of the following frequency distributions

Class interval 50 - 70 70 - 90 90 - 110 110 - 130 130 - 150 150 - 170
Frequency 18 12 13 27 8 22

The following distribution shows the daily pocket allowance given to the children of a multistorey building. The average pocket allowance is Rs 18.00. Find out the missing frequency.

Class interval 11 - 13 13 - 15 15 - 17 17 - 19 19 - 21 21 - 23 23 - 25
Frequency 7 6 9 13 - 5 4

The measurements (in mm) of the diameters of the head of the screws are given below :

Diameter (in mm)    no. of screws
33 - 35 9
36 - 38  21
 39 - 41 30
 42 - 44 22
 45 - 47 18

Calculate the mean diameter of the head of a screw by the ' Assumed Mean Method'.


A study of the yield of 150 tomato plants, resulted in the record:

Tomatoes per Plant 1 - 5 6 - 10 11 - 15 16 - 20 21 - 25
Number of Plants 20 50 46 22 12

Calculate the mean of the number of tomatoes per plant.


If the mean of n observation ax1, ax2, ax3,....,axn is a`bar"X"`, show that `(ax_1 - abar"X") + (ax_2 - abar"X") + ...(ax_"n" - abar"X")` = 0.


In the formula `barx = a + (f_i d_i)/f_i`, for finding the mean of grouped data di’s are deviations from a of ______.


Calculate the mean of the following data:

Class 4 – 7 8 – 11 12 – 15 16 – 19
Frequency 5 4 9 10

An aircraft has 120 passenger seats. The number of seats occupied during 100 flights is given in the following table:

Number of seats 100 – 104 104 – 108 108 – 112 112 – 116 116 – 120
Frequency 15 20 32 18 15

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×