Advertisements
Advertisements
Question
Mean of a certain number of observation is `overlineX`. If each observation is divided by m(m ≠ 0) and increased by n, then the mean of new observation is
Options
`overlineX/m +n`
`overlineX/n+m`
`overlineX +n/m`
`overlineX +m/n`
Solution
Let
\[y_1 , y_2 , y_3 , . . . , y_k\]
be k observations.
Mean of the observations = `overlineX`
\[\Rightarrow \frac{y_1 + y_2 + y_3 + . . . + y_k}{k} = x\]
\[ \Rightarrow y_1 + y_2 + y_3 + . . . + y_k = kx . . . . . \left( 1 \right)\]
If each observation is divided by m and increased by n, then the new observations are
\[\frac{y_1}{m} + n, \frac{y_2}{m} + n, \frac{y_3}{m} + n, . . . , \frac{y_k}{m} + n\]
∴ Mean of new observations
\[= \frac{\left( \frac{y_1}{m} + n \right) + \left( \frac{y_2}{m} + n \right) + . . . + \left( \frac{y_k}{m} + n \right)}{k}\]
\[ = \frac{\left( \frac{y_1}{m} + \frac{y_2}{m} + . . . + \frac{y_k}{m} \right) + \left( n + n + . . . + n \right)}{k}\]
\[ = \frac{y_1 + y_2 + . . . + y_k}{mk} + \frac{nk}{k}\]
`(koverlineX)/mk + (nk)/k`
\[ = \fr
`overlineX/m +n`
APPEARS IN
RELATED QUESTIONS
Frequency distribution of daily commission received by 100 salesmen is given below :
Daily Commission (in Rs.) |
No. of Salesmen |
100-120 | 20 |
120-140 | 45 |
140-160 | 22 |
160-180 | 09 |
180-200 | 04 |
Find mean daily commission received by salesmen, by the assumed mean method.
Calculate the mean for the following distribution:-
x | 5 | 6 | 7 | 8 | 9 |
f | 4 | 8 | 14 | 11 | 3 |
The following table gives the number of children of 150 families in a village. Find the average number of children per family.
No. of children (x) | 0 | 1 | 2 | 3 | 4 | 5 |
No. of families (f) | 10 | 21 | 55 | 42 | 15 | 7 |
The following table gives the distribution of total household expenditure (in rupees) of manual workers in a city. Find the average expenditure (in rupees) per household.
Expenditure (in rupees) (x1) |
Frequency(f1) |
100 - 150 | 24 |
150 - 200 | 40 |
200 - 250 | 33 |
250 - 300 | 28 |
300 - 350 | 30 |
350 - 400 | 22 |
400 - 450 | 16 |
450 - 500 | 7 |
Find the mean of each of the following frequency distributions
Class interval | 0 - 8 | 8 - 16 | 16 - 24 | 24 - 32 | 32 - 40 |
Frequency | 5 | 6 | 4 | 3 | 2 |
Using an appropriate method, find the mean of the following frequency distribution:
Class | 84-90 | 90-96 | 96-102 | 102-108 | 108-114 | 114-120 |
Frequency | 8 | 10 | 16 | 23 | 12 | 11 |
Which method did you use, and why?
A frequency distribution of the life times of 400 T.V., picture tubes leased in tube company is given below. Find the average life of tube:
Life time (in hrs) | Number of tubes |
300 - 399 | 14 |
400 - 499 | 46 |
500 - 599 | 58 |
600 - 699 | 76 |
700 - 799 | 68 |
800 - 899 | 62 |
900 - 999 | 48 |
1000 - 1099 | 22 |
1100 - 1199 | 6 |
If the arithmetic mean of x, x + 3, x + 6, x + 9 and x + 12 is 10, then x = ?
A car travels from city A to city B, 120 km apart at an average speed of 50km/h. It then makes a return trip at an average speed of 60km/h. It covers another 120km distance at an average speed of 40km/h. The average speed over the entire 360km will be ______.
Find the mean of the following frequency distribution:
Class | 1 – 5 | 5 – 9 | 9 – 13 | 13 – 17 |
Frequency | 4 | 8 | 7 | 6 |