Advertisements
Advertisements
प्रश्न
The average score of boys in an examination of a school is 71 and of girls is 73. The averages score of school in that examination is 71.8. Find the ratio of the number of boys between number of girls appeared in the examination.
उत्तर
Let `bar"X"_1 and bar"X"_2` be the average scores of boys and girls respectively and `bar"X"` be the average of both boys and girls. Then
`bar"X"_1 = 71, bar"X"_2 = 73, bar"X" = 71·8.`
∴ `bar"X" = ("n"_1 bar"X"_1 + "n"_2 bar"X"_2)/("n"_1 + "n"_2)`
⇒ 71·8 = `("n"_1 xx 71 + "n"_2 xx 73)/("n"_1 + "n"_2)`
⇒ 71·8 (n1 + n2) = 71n1 + 73n2
⇒ 0·8n1 = 1·2n2
⇒ 8n1 = 12n2
⇒ `("n"_1)/("n"_2) = (12)/(8) = (3)/(2)`
Hence n1 : n2 = 3 : 2.
APPEARS IN
संबंधित प्रश्न
The following table gives the number of children of 150 families in a village. Find the average number of children per family.
No. of children (x) | 0 | 1 | 2 | 3 | 4 | 5 |
No. of families (f) | 10 | 21 | 55 | 42 | 15 | 7 |
The daily expenditure of 100 families are given below. Calculate `f_1` and `f_2` if the mean daily expenditure is ₹ 188.
Expenditure (in Rs) |
140-160 | 160-180 | 180-200 | 200-220 | 220-240 |
Number of families |
5 | 25 | `f_1` | `f_2` | 5 |
The weights of tea in 70 packets are shown in the following table:
Weight | 200 – 201 |
201 – 202 |
202 – 203 |
203 – 204 |
204 – 205 |
205 – 206 |
Number of packets | 13 | 27 | 18 | 10 | 1 | 1 |
Find the mean weight of packets using step deviation method.
The following table shows the income of farmers in a grape season. Find the mean of their income.
Income
(Thousand Rupees)
|
20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 |
Farmers | 10 | 11 | 15 | 16 | 18 | 14 |
The mean of n observation is `overlineX` .f the first item is increased by 1, second by 2 and so on, then the new mean is
The weekly wages of 120 workers in a factory are shown in the following frequency distribution table. Find the mean of the weekly wages.
Weekly wages
(Rupees)
|
0 - 2000 | 2000 - 4000 | 4000 - 6000 | 6000 - 8000 |
No. of workers | 15 | 35 | 50 | 20 |
The following frequency distribution table shows the amount of aid given to 50 flood affected families. Find the mean of the amount of aid.
Amount of aid
(Thousand rupees)
|
50 - 60 | 60 - 70 | 70 - 80 | 80 - 90 | 90 - 100 |
No. of families | 7 | 13 | 20 | 6 | 4 |
The Mean of n observation x1, x2,..., xn is `bar"X"`. If (a - b) is added to each of the observation, show that the mean of the new set of observation is `bar"X"` + (a - b).
The distribution given below shows the runs scored by batsmen in one-day cricket matches. Find the mean number of runs.
Runs scored |
0 – 40 | 40 – 80 | 80 – 120 | 120 – 160 | 160 – 200 |
Number of batsmen |
12 | 20 | 35 | 30 | 23 |
Find the mean of the following frequency distribution:
Class: | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 |
Frequency: | 4 | 10 | 5 | 6 | 5 |