Advertisements
Advertisements
प्रश्न
The following frequency distribution table shows the amount of aid given to 50 flood affected families. Find the mean of the amount of aid.
Amount of aid
(Thousand rupees)
|
50 - 60 | 60 - 70 | 70 - 80 | 80 - 90 | 90 - 100 |
No. of families | 7 | 13 | 20 | 6 | 4 |
उत्तर
Class
(Amount of aid in thousand rupees) |
Class Mark xi |
Frequency (Number of families) fi |
Class mark × Frequency xifi |
50 - 60 | 55 | 7 | 385 |
60 - 70 | 65 | 13 | 845 |
70 - 80 | 75 | 20 | 1500 |
80 - 90 | 85 | 6 | 510 |
90 - 100 | 95 | 4 | 380 |
`sum f_i ` = 50 | `sum x_i f_i = 3620` |
Mean = `(sum x_i f_i )/(sum f_i)`
`= 3620/50`
= 72.4 thousand rupees
= Rs 72400
Hence, the mean of the amount of aid is Rs 72400.
APPEARS IN
संबंधित प्रश्न
A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent.
Number of days | 0 - 6 | 6 - 10 | 10 -14 | 14 -20 | 20 -28 | 28 -38 | 38 -40 |
Number of students | 11 | 10 | 7 | 4 | 4 | 3 | 1 |
The number of telephone calls received at an exchange per interval for 250 successive one minute intervals are given in the following frequency table:
No. of calls(x) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
No. of intervals (f) | 15 | 24 | 29 | 46 | 54 | 43 | 39 |
Compute the mean number of calls per interval.
Find the mean of each of the following frequency distributions: (5 - 14)
Class interval | 0 - 6 | 6 - 12 | 12 - 18 | 18 - 24 | 24 - 30 |
Frequency | 6 | 8 | 10 | 9 | 7 |
The mean of the following frequency distribution is 62.8 and the sum of all the frequencies is 50. Compute the missing frequency f1 and f2.
Class | 0 - 20 | 20 - 40 | 40 - 60 | 60 - 80 | 80 - 100 | 100 - 120 |
Frequency | 5 | f1 | 10 | f2 | 7 | 8 |
Find the mean of the following data, using direct method:
Class | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 |
Frequency | 6 | 9 | 15 | 12 | 8 |
Weight of 60 eggs were recorded as given below:
Weight (in grams) | 75 – 79 | 80 – 84 | 85 – 89 | 90 – 94 | 95 – 99 | 100 - 104 | 105 - 109 |
No. of eggs | 4 | 9 | 13 | 17 | 12 | 3 | 2 |
Calculate their mean weight to the nearest gram.
Consider the following distribution of daily wages of 50 workers of a factory:
Daily wages (in ₹) |
500-520 | 520-540 | 540-560 | 560-580 | 580-600 |
Number of workers | 12 | 14 | 8 | 6 | 10 |
Find the mean daily wages of the workers of the factory by using an appropriate method.
If the arithmetic mean of x, x + 3, x + 6, x + 9, and x + 12 is 10, the x =
The mean of first n odd natural number is
If the arithmetic mean, 7, 8, x, 11, 14 is x, then x =
While computing mean of grouped data, we assume that the frequencies are ______.
There are 50 students in a class in which 40 are boys and rest are girls. The average weight of the class is 44 kgs and the average weight of the girls is 40 kgs. Find the average weight of the boys.
If the mean of n observation ax1, ax2, ax3,....,axn is a`bar"X"`, show that `(ax_1 - abar"X") + (ax_2 - abar"X") + ...(ax_"n" - abar"X")` = 0.
Mean of 100 items is 49. It was discovered that three items which should have been 60, 70, 80 were wrongly read as 40, 20, 50 respectively. The correct mean is ______.
The value of `sum_(i=1)^nx_i` is ______.
The weights (in kg) of 50 wrestlers are recorded in the following table:
Weight (in kg) | 100 – 110 | 110 – 120 | 120 – 130 | 130 – 140 | 140 – 150 |
Number of wrestlers |
4 | 14 | 21 | 8 | 3 |
Find the mean weight of the wrestlers.
The mean of 6 distinct observations is 6.5 and their variance is 10.25. If 4 out of 6 observations are 2, 4, 5 and 7, then the remaining two observations are ______.
250 apples of a box were weighed and the distribution of masses of the apples is given in the following table:
Mass (in grams) |
80 – 100 | 100 – 120 | 120 – 140 | 140 – 160 | 160 – 180 |
Number of apples |
20 | 60 | 70 | x | 60 |
Find the value of x and the mean mass of the apples.
Using step-deviation method, find mean for the following frequency distribution:
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
Frequency | 3 | 4 | 7 | 6 | 8 | 2 |