Advertisements
Advertisements
प्रश्न
The weights (in kg) of 50 wrestlers are recorded in the following table:
Weight (in kg) | 100 – 110 | 110 – 120 | 120 – 130 | 130 – 140 | 140 – 150 |
Number of wrestlers |
4 | 14 | 21 | 8 | 3 |
Find the mean weight of the wrestlers.
उत्तर
We first find the class mark of each class and then proceed as follows.
Weight (in kg) |
Number of wrestler `(bb(f_i))` |
Class marks `(bb(x_i))` |
Deviations `bb(d_i = x_i - a)` |
`bb(f_i d_i)` |
100 – 110 | 4 | 105 | – 20 | – 80 |
110 – 120 | 14 | 115 | – 10 | – 140 |
120 – 130 | 21 | a = 125 | 0 | 0 |
130 – 140 | 8 | 135 | 10 | 80 |
140 – 150 | 3 | 145 | 20 | 60 |
`N = sumf_i = 50` | `sumf_i d_i = -80` |
∴ Assumed mean (a) = 125
Class width (h) = 10
And total observation (N) = 50
By assumed mean method,
Mean `(barx) = a + (sumf_i d_i)/(sumf_i)`
= `125 + ((-80))/50`
= 125 – 1.6
= 123.4 kg
APPEARS IN
संबंधित प्रश्न
The measurements (in mm) of the diameters of the head of the screws are given below:
Diameter (in mm) | No. of Screws |
33 — 35 | 10 |
36 — 38 | 19 |
39 — 41 | 23 |
42 — 44 | 21 |
45 — 47 | 27 |
Calculate mean diameter of head of a screw by ‘Assumed Mean Method’.
Calculate the mean for the following distribution:-
x | 5 | 6 | 7 | 8 | 9 |
f | 4 | 8 | 14 | 11 | 3 |
Find the mean of each of the following frequency distributions
Class interval | 50 - 70 | 70 - 90 | 90 - 110 | 110 - 130 | 130 - 150 | 150 - 170 |
Frequency | 18 | 12 | 13 | 27 | 8 | 22 |
Find the mean of each of the following frequency distributions
Class interval | 0 - 6 | 6 - 12 | 12 - 18 | 18 - 24 | 24 - 30 |
Frequency | 7 | 5 | 10 | 12 | 6 |
The mean of following frequency distribution is 54. Find the value of p.
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 |
Frequency | 7 | p | 10 | 9 | 13 |
The daily expenditure of 100 families are given below. Calculate `f_1` and `f_2` if the mean daily expenditure is ₹ 188.
Expenditure (in Rs) |
140-160 | 160-180 | 180-200 | 200-220 | 220-240 |
Number of families |
5 | 25 | `f_1` | `f_2` | 5 |
Find the mean of the following frequency distribution, using the assumed-mean method:
Class | 100 – 120 | 120 – 140 | 140 – 160 | 160 – 180 | 180 – 200 |
Frequency | 10 | 20 | 30 | 15 | 5 |
The mean of 1, 3, 4, 5, 7, 4 is m. The numbers 3, 2, 2, 4, 3, 3, p have mean m − 1 and median q. Then, p + q =
If xi’s are the midpoints of the class intervals of grouped data, fi’s are the corresponding frequencies and `barx` is the mean, then `sum(f_ix_i - barx)` is equal to ______.
The following table gives the marks scored by a set of students in an examination. Calculate the mean of the distribution by using the short cut method.
Marks | Number of Students (f) |
0 – 10 | 3 |
10 – 20 | 8 |
20 – 30 | 14 |
30 – 40 | 9 |
40 – 50 | 4 |
50 – 60 | 2 |