Advertisements
Advertisements
प्रश्न
The mileage (km per litre) of 50 cars of the same model was tested by a manufacturer and details are tabulated as given below:
Mileage (km/l) | 10 – 12 | 12 – 14 | 14 – 16 | 16 – 18 |
Number of cars | 7 | 12 | 18 | 13 |
Find the mean mileage. The manufacturer claimed that the mileage of the model was 16 km/litre. Do you agree with this claim?
उत्तर
Mileage (km/l) |
Class marks `(bb(x_i))` |
Number of cars `(bb(f_i))` |
`bb(f_i x_i)` |
10 – 12 | 11 | 7 | 77 |
12 – 14 | 13 | 12 | 156 |
14 – 16 | 15 | 18 | 270 |
16 – 18 | 17 | 13 | 221 |
Total | `sumf_i = 50` | `sumf_i x_i = 724` |
Here, `sumf_i` = 50
And `sumf_i x_i` = 724
∴ Mean `(barx) = (sumf_i x_i)/(sumf_i)`
= `724/50`
= 14.48
Hence, mean mileage is 14.48 km/l.
No, the manufacture is claiming mileage 1.52 km/l more than average mileage.
APPEARS IN
संबंधित प्रश्न
To find out the concentration of SO2 in the air (in parts per million, i.e., ppm), the data was collected for 30 localities in a certain city and is presented below:
concentration of SO2 (in ppm) | Frequency |
0.00 − 0.04 | 4 |
0.04 − 0.08 | 9 |
0.08 − 0.12 | 9 |
0.12 − 0.16 | 2 |
0.16 − 0.20 | 4 |
0.20 − 0.24 | 2 |
Find the mean concentration of SO2 in the air.
Find the missing frequency (p) for the following distribution whose mean is 7.68.
x | 3 | 5 | 7 | 9 | 11 | 13 |
f | 6 | 8 | 15 | P | 8 | 4 |
Five coins were simultaneously tossed 1000 times and at each toss the number of heads were observed. The number of tosses during which 0, 1, 2, 3, 4 and 5 heads were obtained are shown in the table below. Find the mean number of heads per toss.
No. of heads per toss | No. of tosses |
0 | 38 |
1 | 144 |
2 | 342 |
3 | 287 |
4 | 164 |
5 | 25 |
Total | 1000 |
Find the mean of each of the following frequency distributions: (5 - 14)
Class interval | 0 - 6 | 6 - 12 | 12 - 18 | 18 - 24 | 24 - 30 |
Frequency | 6 | 8 | 10 | 9 | 7 |
Find the mean of each of the following frequency distributions
Class interval | 0 - 6 | 6 - 12 | 12 - 18 | 18 - 24 | 24 - 30 |
Frequency | 7 | 5 | 10 | 12 | 6 |
The mean of the following frequency distribution is 62.8 and the sum of all the frequencies is 50. Compute the missing frequency f1 and f2.
Class | 0 - 20 | 20 - 40 | 40 - 60 | 60 - 80 | 80 - 100 | 100 - 120 |
Frequency | 5 | f1 | 10 | f2 | 7 | 8 |
The following distribution shows the daily pocket allowance of children of a locality. If the mean pocket allowance is ₹ 18 , find the missing frequency f.
Daily pocket allowance (in Rs.) |
11-13 | 13-15 | 15-17 | 17-19 | 19-21 | 21-23 | 23-25 |
Number of children | 7 | 6 | 9 | 13 | f | 5 | 4 |
The daily expenditure of 100 families are given below. Calculate `f_1` and `f_2` if the mean daily expenditure is ₹ 188.
Expenditure (in Rs) |
140-160 | 160-180 | 180-200 | 200-220 | 220-240 |
Number of families |
5 | 25 | `f_1` | `f_2` | 5 |
There are three dealers A, B and C in Maharashtra. Suppose, the trade of each of them in september 2018 was as shown in the following table.
The rate of GST on each transaction was 5%.
Read the table and answer the questions below it.
Dealer | GST collected on the sale |
GST paid at the time of purchase |
ITC | Tax paid to the Govt. |
Taxbalance with the Govt. |
A | Rs.5000 | Rs. 6000 | Rs. 5000 | Rs. 0 | Rs. 1000 |
B | Rs 5000 | Rs. 4000 | Rs. 4000 | Rs. 1000 | Rs. 0 |
C | Rs.5000 | Rs. 5000 | Rs. 5000 | Rs. 0 | Rs. 0 |
(i) How much amount did the dealer A get by sale ?
(ii) For how much amount did the dealer B buy the articles ?
(iii) How much is the balance of CGST and SGST left with the government that was paid by A ?
The contents of 100 match box were checked to determine the number of match sticks they contained.
Number of match sticks | Number of boxes |
35 | 6 |
36 | 10 |
37 | 18 |
38 | 25 |
39 | 21 |
40 | 12 |
41 | 8 |
(i) Calculate correct to one decimal place, the mean number of match sticks per box.
(ii) Determine how many matchsticks would have to be added. To the total contents of the 100 boxes to bring the mean up exactly 39 match sticks.