Advertisements
Advertisements
प्रश्न
The mean of the following frequency distribution is 62.8 and the sum of all the frequencies is 50. Compute the missing frequency f1 and f2.
Class | 0 - 20 | 20 - 40 | 40 - 60 | 60 - 80 | 80 - 100 | 100 - 120 |
Frequency | 5 | f1 | 10 | f2 | 7 | 8 |
उत्तर
Class interval | Mid value(x1) | Frequency(f1) | f1x1 |
0 - 20 | 10 | 5 | 50 |
20 - 40 | 30 | f1 | 30f1 |
40 - 60 | 50 | 10 | 500 |
60 - 80 | 70 | f2 | 70f2 |
80 - 100 | 90 | 7 | 630 |
100 - 120 | 110 | 8 | 880 |
N = 50 | `sumf_1x_1=30f_1+70f_2+2060` |
Given
Sum of frequency = 50
⇒ 5 + f1 + 10 + f2 + 7 + 8 = 50
⇒ f1 + f2 = 50 - 5 - 10 - 7 - 8
⇒ f1 + f2 = 20
⇒ 3f1 + 3f2 = 60 .........(1)[multiply both side by '3']
And Mean = 62.8
`rArr(sumf_1x_1)/N=62.8`
`rArr(30f_1+70f_2+2060)/50=62.8`
⇒ 30f1 + 70f2 + 2060 = 62.8 x 50
⇒ 30f1 + 70f2 + 2060 = 3140
⇒ 30f1 + 70f2 = 3140 - 2060
⇒ 30f1 + 70f2 = 1080
⇒ 3f1 + 7f2 = 108 ............(2)[Both sides divided by 10]
Subtract equation (1) from equation (2)
⇒ 3f1 + 7f2 - (3f1 + 3f2) = 108 - 60
⇒ 3f1 + 7f2 - 3f1 - 3f2 = 48
⇒ 4f2 = 48
⇒ f2 = 48/4 = 12
Put value of f2 in equation (1)
⇒ 3f1 + 3f2 = 60
⇒ 3f1 + 3(12) = 60
⇒ 3f1 + 36 = 60
⇒ 3f1 = 60 - 36
⇒ 3f1 = 24
⇒ f1 = 24/3 = 8
∴ f1 = 8 and f2 = 12
APPEARS IN
संबंधित प्रश्न
If the mean of the following data is 20.6. Find the value of p.
x | 10 | 15 | P | 25 | 35 |
f | 3 | 10 | 25 | 7 | 5 |
The algebraic sum of the deviations of a frequency distribution from its mean is always ______.
The mean of 1, 3, 4, 5, 7, 4 is m. The numbers 3, 2, 2, 4, 3, 3, p have mean m − 1 and median q. Then, p + q =
If the mean of observation \[x_1 , x_2 , . . . . , x_n is x\] then the mean of x1 + a, x2 + a, ....., xn + a is
In the formula
Find the mean of the following frequency distribution:
Class Interval | Frequency |
0 - 50 | 4 |
50 - 100 | 8 |
100 - 150 | 16 |
150 - 200 | 13 |
200 - 250 | 6 |
250 - 300 | 3 |
If the mean of observations x1, x2, x3, ....xn is `barx,` then the mean of new observations x1 + a, x2 + a, x3 + a, ........ xn + a is?
di is the deviation of xi from assumed mean a. If mean = `x+(sumf_id_i)/(sumf_i),` then x is ______.
The mean of 6 distinct observations is 6.5 and their variance is 10.25. If 4 out of 6 observations are 2, 4, 5 and 7, then the remaining two observations are ______.
The following table gives the distribution of the life time of 400 neon lamps:
Life time (in hours) | Number of lamps |
1500 – 2000 | 14 |
2000 – 2500 | 56 |
2500 – 3000 | 60 |
3000 – 3500 | 86 |
3500 – 4000 | 74 |
4000 – 4500 | 62 |
4500 – 5000 | 48 |
Find the average life time of a lamp.