Advertisements
Advertisements
प्रश्न
Consider the following distribution of daily wages of 50 workers of a factory:
Daily wages (in ₹) |
500-520 | 520-540 | 540-560 | 560-580 | 580-600 |
Number of workers | 12 | 14 | 8 | 6 | 10 |
Find the mean daily wages of the workers of the factory by using an appropriate method.
उत्तर
To find the class mark for each interval, the following relation is used.
xi = `("Upper class limits + Lower class limits")/2`
Class size (h) of this data = 20
Taking 550 as assured mean (a), di, ui, and fiui can be calculated as follows:
Daily wages (in Rs) |
Number of workers (fi) | xi | di = xi − 550 | ui = `d_i/20` | fiui |
500 - 520 | 12 | 510 | - 40 | − 2 | − 24 |
520 - 540 | 14 | 530 | - 20 | − 1 | − 14 |
540 - 560 | 8 | 550 | 0 | 0 | 0 |
560 - 580 | 6 | 570 | 20 | 1 | 6 |
580 - 600 | 10 | 590 | 40 | 2 | 20 |
Total | ∑fi = 50 | - | - | -12 |
From the table, it can be observed that
∑fi = 50
∑fiui = −12
Mean, `barx = a+((∑f_i"u"_i)/(∑f_i))h`
`= 550+((-12)/50)20`
`= 550 - 24/5`
= 550 - 4.8
= 545.20
Therefore, the mean daily wage of the workers of the factory is Rs. 545.20.
संबंधित प्रश्न
In a retail market, fruit vendors were selling mangoes kept in packing boxes. These boxes contained varying number of mangoes. The following was the distribution of mangoes according to the number of boxes.
Number of mangoe | 50 − 52 | 53 − 55 | 56 − 58 | 59 − 61 | 62 − 64 |
Number of boxes | 15 | 110 | 135 | 115 | 25 |
Find the mean number of mangoes kept in a packing box. Which method of finding the mean did you choose?
The table below shows the daily expenditure on food of 25 households in a locality.
Daily expenditure (in Rs) | 100 − 150 | 150 − 200 | 200 − 250 | 250 − 300 | 300 − 350 |
Number of households | 4 | 5 | 12 | 2 | 2 |
Find the mean daily expenditure on food by a suitable method.
Calculate the mean for the following distribution:-
x | 5 | 6 | 7 | 8 | 9 |
f | 4 | 8 | 14 | 11 | 3 |
If the mean of the following data is 20.6. Find the value of p.
x | 10 | 15 | P | 25 | 35 |
f | 3 | 10 | 25 | 7 | 5 |
If the mean of the following data is 15, find p.
x | 5 | 10 | 15 | 20 | 25 |
f | 6 | P | 6 | 10 | 5 |
Find the value of p, if the mean of the following distribution is 20.
x | 15 | 17 | 19 | 20+P | 23 |
f | 2 | 3 | 4 | 5P | 6 |
Five coins were simultaneously tossed 1000 times and at each toss the number of heads were observed. The number of tosses during which 0, 1, 2, 3, 4 and 5 heads were obtained are shown in the table below. Find the mean number of heads per toss.
No. of heads per toss | No. of tosses |
0 | 38 |
1 | 144 |
2 | 342 |
3 | 287 |
4 | 164 |
5 | 25 |
Total | 1000 |
Find the mean from the following frequency distribution of marks at a test in statistics:
Marks(x) | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
No. of students (f) | 15 | 50 | 80 | 76 | 72 | 45 | 39 | 9 | 8 | 6 |
Find the mean of each of the following frequency distributions
Class interval | 0 - 8 | 8 - 16 | 16 - 24 | 24 - 32 | 32 - 40 |
Frequency | 6 | 7 | 10 | 8 | 9 |
The weekly observations on cost of living index in a certain city for the year 2004 - 2005 are given below. Compute the weekly cost of living index.
Cost of living Index | Number of Students |
1400 - 1500 | 5 |
1500 - 1600 | 10 |
1600 - 1700 | 20 |
1700 - 1800 | 9 |
1800 - 1900 | 6 |
1900 - 2000 | 2 |
Find the mean of the following data, using direct method:
Class | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 |
Frequency | 6 | 9 | 15 | 12 | 8 |
The following distribution shows the daily pocket allowance of children of a locality. If the mean pocket allowance is ₹ 18 , find the missing frequency f.
Daily pocket allowance (in Rs.) |
11-13 | 13-15 | 15-17 | 17-19 | 19-21 | 21-23 | 23-25 |
Number of children | 7 | 6 | 9 | 13 | f | 5 | 4 |
The mean of the following frequency data is 42, Find the missing frequencies x and y if the sum of frequencies is 100
Class interval |
0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency | 7 | 10 | x | 13 | y | 10 | 14 | 9 |
Find x and y.
Find the mean of the following frequency distribution, using the assumed-mean method:
Class | 100 – 120 | 120 – 140 | 140 – 160 | 160 – 180 | 180 – 200 |
Frequency | 10 | 20 | 30 | 15 | 5 |
Find the mean of the following frequency distribution using step-deviation method
Class | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency | 7 | 10 | 15 | 8 | 10 |
If the mean of the following frequency distribution is 18, find the missing frequency.
Class interval | 11 – 13 | 13 – 15 | 15 – 17 | 17 – 19 | 19 – 21 | 21 – 23 | 23 – 25 |
Frequency | 3 | 6 | 9 | 13 | f | 5 | 4 |
Define mean.
The mean of n observation is `overlineX` .f the first item is increased by 1, second by 2 and so on, then the new mean is
If the mean of first n natural numbers is \[\frac{5n}{9}\], then n =
Mean of a certain number of observation is `overlineX`. If each observation is divided by m(m ≠ 0) and increased by n, then the mean of new observation is
The measurements (in mm) of the diameters of the head of the screws are given below :
Diameter (in mm) | no. of screws |
33 - 35 | 9 |
36 - 38 | 21 |
39 - 41 | 30 |
42 - 44 | 22 |
45 - 47 | 18 |
Calculate the mean diameter of the head of a screw by the ' Assumed Mean Method'.
The average score of boys in an examination of a school is 71 and of girls is 73. The averages score of school in that examination is 71.8. Find the ratio of the number of boys between number of girls appeared in the examination.
Find the mean of the following distribution:
x | 4 | 6 | 9 | 10 | 15 |
f | 5 | 10 | 10 | 7 | 8 |
Find the mean of the following distribution:
x | 10 | 30 | 50 | 70 | 89 |
f | 7 | 8 | 10 | 15 | 10 |
Find the mean of the following frequency distribution:
Class Interval | Frequency |
0 - 50 | 4 |
50 - 100 | 8 |
100 - 150 | 16 |
150 - 200 | 13 |
200 - 250 | 6 |
250 - 300 | 3 |
The marks obtained by a set of students in an examination all given below:
Marks | 5 | 10 | 15 | 20 | 25 | 30 |
Number of students | 6 | 4 | 6 | 12 | x | 4 |
Given that the mean marks of the set of students is 18, Calculate the numerical value of x.
The Mean of n observation x1, x2,..., xn is `bar"X"`. If (a - b) is added to each of the observation, show that the mean of the new set of observation is `bar"X"` + (a - b).
The average score of girls in class X examination in school is 67 and that of boys is 63. The average score for the whole class is 64.5. Find the percentage of girls and boys in the class.
If the mean of first n natural numbers is `(5n)/9,` then n =?
If the mean of observations x1, x2, x3, ....xn is `barx,` then the mean of new observations x1 + a, x2 + a, x3 + a, ........ xn + a is?
The value of `sum_(i=1)^nx_i` is ______.
The average weight of a group of 25 men was calculated to be 78.4 kg. It was discovered later that one weight was wrongly entered as 69 kg instead of 96 kg. What is the correct average?
In calculating the mean of grouped data, grouped in classes of equal width, we may use the formula `barx = a + (sumf_i d_i)/(sumf_i)` where a is the assumed mean. a must be one of the mid-points of the classes. Is the last statement correct? Justify your answer.
The mileage (km per litre) of 50 cars of the same model was tested by a manufacturer and details are tabulated as given below:
Mileage (km/l) | 10 – 12 | 12 – 14 | 14 – 16 | 16 – 18 |
Number of cars | 7 | 12 | 18 | 13 |
Find the mean mileage. The manufacturer claimed that the mileage of the model was 16 km/litre. Do you agree with this claim?
Find the mean for the following distribution:
Class Interval | 20 - 40 | 40 - 60 | 60 - 80 | 80 - 100 |
Frequency | 4 | 7 | 6 | 3 |
If the mean of 9, 8, 10, x, 14 is 11, find the value of x.
Find the mean of the following data using assumed mean method:
Class | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 |
Frequency | 8 | 7 | 10 | 13 | 12 |
The following table gives the duration of movies in minutes:
Duration | 100 – 110 | 110 – 120 | 120 – 130 | 130 – 140 | 140 – 150 | 150 – 160 |
No. of movies | 5 | 10 | 17 | 8 | 6 | 4 |
Using step-deviation method, find the mean duration of the movies.