Advertisements
Advertisements
प्रश्न
Consider the following distribution of daily wages of 50 workers of a factory:
Daily wages (in ₹) |
500-520 | 520-540 | 540-560 | 560-580 | 580-600 |
Number of workers | 12 | 14 | 8 | 6 | 10 |
Find the mean daily wages of the workers of the factory by using an appropriate method.
उत्तर
To find the class mark for each interval, the following relation is used.
xi = `("Upper class limits + Lower class limits")/2`
Class size (h) of this data = 20
Taking 550 as assured mean (a), di, ui, and fiui can be calculated as follows:
Daily wages (in Rs) |
Number of workers (fi) | xi | di = xi − 550 | ui = `d_i/20` | fiui |
500 - 520 | 12 | 510 | - 40 | − 2 | − 24 |
520 - 540 | 14 | 530 | - 20 | − 1 | − 14 |
540 - 560 | 8 | 550 | 0 | 0 | 0 |
560 - 580 | 6 | 570 | 20 | 1 | 6 |
580 - 600 | 10 | 590 | 40 | 2 | 20 |
Total | ∑fi = 50 | - | - | -12 |
From the table, it can be observed that
∑fi = 50
∑fiui = −12
Mean, `barx = a+((∑f_i"u"_i)/(∑f_i))h`
`= 550+((-12)/50)20`
`= 550 - 24/5`
= 550 - 4.8
= 545.20
Therefore, the mean daily wage of the workers of the factory is Rs. 545.20.
संबंधित प्रश्न
If the mean of the following data is 20.6. Find the value of p.
x | 10 | 15 | P | 25 | 35 |
f | 3 | 10 | 25 | 7 | 5 |
Find the missing frequency (p) for the following distribution whose mean is 7.68.
x | 3 | 5 | 7 | 9 | 11 | 13 |
f | 6 | 8 | 15 | P | 8 | 4 |
The following table gives the number of branches and number of plants in the garden of a school.
No. of branches (x) | 2 | 3 | 4 | 5 | 6 |
No. of plants (f) | 49 | 43 | 57 | 38 | 13 |
Calculate the average number of branches per plant.
Find the mean of each of the following frequency distributions
Class interval | 50 - 70 | 70 - 90 | 90 - 110 | 110 - 130 | 130 - 150 | 150 - 170 |
Frequency | 18 | 12 | 13 | 27 | 8 | 22 |
Find the mean of each of the following frequency distributions
Class interval | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
Frequency | 9 | 12 | 15 | 10 | 14 |
Find the mean of each of the following frequency distributions
Class interval | 10 - 30 | 30 - 50 | 50 - 70 | 70 - 90 | 90 - 110 | 110 - 130 |
Frequency | 5 | 8 | 12 | 20 | 3 | 2 |
Using an appropriate method, find the mean of the following frequency distribution:
Class | 84-90 | 90-96 | 96-102 | 102-108 | 108-114 | 114-120 |
Frequency | 8 | 10 | 16 | 23 | 12 | 11 |
Which method did you use, and why?
The following distribution shows the daily pocket allowance of children of a locality. If the mean pocket allowance is ₹ 18 , find the missing frequency f.
Daily pocket allowance (in Rs.) |
11-13 | 13-15 | 15-17 | 17-19 | 19-21 | 21-23 | 23-25 |
Number of children | 7 | 6 | 9 | 13 | f | 5 | 4 |
During a medical check-up, the number of heartbeats per minute of 30 patients were recorded and summarized as follows:
Number of heartbeats per minute |
65 – 68 | 68 – 71 | 71 – 74 | 74 – 77 | 77 – 80 | 80 – 83 | 83 - 86 |
Number of patients |
2 | 4 | 3 | 8 | 7 | 4 | 2 |
Find the mean heartbeats per minute for these patients, choosing a suitable method.
Find the mean of the following data, using step-deviation method:
Class | 5 – 15 | 15-20 | 20-35 | 35-45 | 45-55 | 55-65 | 65-75 |
Frequency | 6 | 10 | 16 | 15 | 24 | 8 | 7 |
The following table shows the age distribution of patients of malaria in a village during a particular month:
Age (in years) | 5 – 14 | 15 – 24 | 25 – 34 | 35 – 44 | 45 – 54 | 55 - 64 |
No. of cases | 6 | 11 | 21 | 23 | 14 | 5 |
Find the average age of the patients.
The following table shows the income of farmers in a grape season. Find the mean of their income.
Income
(Thousand Rupees)
|
20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 |
Farmers | 10 | 11 | 15 | 16 | 18 | 14 |
Write the empirical relation between mean, mode and median.
If the mean of 6, 7, x, 8, y, 14 is 9, then ______.
If the mean of first n natural number is 15, then n =
In the formula
The distances covered by 250 public transport buses in a day is shown in the following frequency distribution table. Find the median of the distance.
Distance (km)
|
200 - 210 | 210 - 220 | 220 - 230 | 230 - 240 | 240 - 250 |
No. of buses | 40 | 60 | 80 | 50 | 20 |
If Σfi = 25 and Σfixi = 100, then find the mean (`bar"x"`)
The measurements (in mm) of the diameters of the head of the screws are given below :
Diameter (in mm) | no. of screws |
33 - 35 | 9 |
36 - 38 | 21 |
39 - 41 | 30 |
42 - 44 | 22 |
45 - 47 | 18 |
Calculate the mean diameter of the head of a screw by the ' Assumed Mean Method'.
A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent.
Number of days: | 0-6 | 6-12 | 12-18 | 18-24 | 24-30 | 30-36 | 36-42 |
Number of students: | 10 | 11 | 7 | 4 | 4 | 3 | 1 |
If the mean of the following distribution is 7.5, find the missing frequency ‘f’:
Variable : | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Frequency: | 20 | 17 | f | 10 | 8 | 6 | 7 | 6 |
A frequency distribution of the life times of 400 T.V., picture tubes leased in tube company is given below. Find the average life of tube:
Life time (in hrs) | Number of tubes |
300 - 399 | 14 |
400 - 499 | 46 |
500 - 599 | 58 |
600 - 699 | 76 |
700 - 799 | 68 |
800 - 899 | 62 |
900 - 999 | 48 |
1000 - 1099 | 22 |
1100 - 1199 | 6 |
If the mean of n observation ax1, ax2, ax3,....,axn is a`bar"X"`, show that `(ax_1 - abar"X") + (ax_2 - abar"X") + ...(ax_"n" - abar"X")` = 0.
The average score of girls in class X examination in school is 67 and that of boys is 63. The average score for the whole class is 64.5. Find the percentage of girls and boys in the class.
If the arithmetic mean of x, x + 3, x + 6, x + 9 and x + 12 is 10, then x = ?
In a small scale industry, salaries of employees are given in the following distribution table:
Salary (in Rs.) |
4000 - 5000 |
5000 - 6000 |
6000 - 7000 |
7000 - 8000 |
8000 - 9000 |
9000 - 10000 |
Number of employees |
20 | 60 | 100 | 50 | 80 | 90 |
Then the mean salary of the employee is?
di is the deviation of xi from assumed mean a. If mean = `x+(sumf_id_i)/(sumf_i),` then x is ______.
If mean = (3median - mode) . k, then the value of k is ______.
The value of `sum_(i=1)^nx_i` is ______.
xi | fi | fixi |
4 | 10 | A ______ |
8 | 11 | B ______ |
12 | 9 | C ______ |
16 | 13 | D ______ |
`sumf_ix_i =` ______ |
Find the value of `sumf_ix_i`
(For an arranged data) The median is the ______.
The mileage (km per litre) of 50 cars of the same model was tested by a manufacturer and details are tabulated as given below:
Mileage (km/l) | 10 – 12 | 12 – 14 | 14 – 16 | 16 – 18 |
Number of cars | 7 | 12 | 18 | 13 |
Find the mean mileage. The manufacturer claimed that the mileage of the model was 16 km/litre. Do you agree with this claim?
Find the mean of: 5, 2.4, 6.2, 8.9, 4.1 and 3.4
Find the mean for the following distribution:
Class Interval | 20 - 40 | 40 - 60 | 60 - 80 | 80 - 100 |
Frequency | 4 | 7 | 6 | 3 |
Find the mean, median and mode of the given data:
Class | 65 – 85 | 85 – 105 | 105 – 125 | 125 – 145 | 145 – 165 | 165 – 185 | 185 –205 |
Frequency | 8 | 7 | 22 | 17 | 13 | 5 | 3 |
If the mean of 9, 8, 10, x, 14 is 11, find the value of x.
The mean of the following frequency distribution is 25. Find the value of f.
Class | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency | 5 | 18 | 15 | f | 6 |
Find the mean of the following frequency distribution:
Class: | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 |
Frequency: | 4 | 10 | 5 | 6 | 5 |
The following table gives the duration of movies in minutes:
Duration | 100 – 110 | 110 – 120 | 120 – 130 | 130 – 140 | 140 – 150 | 150 – 160 |
No. of movies | 5 | 10 | 17 | 8 | 6 | 4 |
Using step-deviation method, find the mean duration of the movies.