Advertisements
Advertisements
प्रश्न
Find the mean for the following distribution:
Class Interval | 20 - 40 | 40 - 60 | 60 - 80 | 80 - 100 |
Frequency | 4 | 7 | 6 | 3 |
उत्तर
Class Interval | f | x | fx |
20 - 40 | 4 | 30 | 120 |
40 - 60 | 7 | 50 | 350 |
60 - 80 | 6 | 70 | 420 |
80 - 100 | 3 | 90 | 270 |
20 | 1160 |
∑f = 20 and ∑fx = 1160
`barx = (∑ "f"x)/(∑ "f")`
`barx= 1160/20`
`barx` = 58
APPEARS IN
संबंधित प्रश्न
Find the mean from the following frequency distribution of marks at a test in statistics:
Marks(x) | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
No. of students (f) | 15 | 50 | 80 | 76 | 72 | 45 | 39 | 9 | 8 | 6 |
Find the mean of each of the following frequency distributions
Class interval | 50 - 70 | 70 - 90 | 90 - 110 | 110 - 130 | 130 - 150 | 150 - 170 |
Frequency | 18 | 12 | 13 | 27 | 8 | 22 |
The mean of the following frequency distribution is 62.8 and the sum of all the frequencies is 50. Compute the missing frequency f1 and f2.
Class | 0 - 20 | 20 - 40 | 40 - 60 | 60 - 80 | 80 - 100 | 100 - 120 |
Frequency | 5 | f1 | 10 | f2 | 7 | 8 |
Find the mean age from the following frequency distribution:
Age (in years) | 25 – 29 | 30 – 34 | 35 – 39 | 40 – 44 | 45 – 49 | 50 – 54 | 55 – 59 |
Number of persons | 4 | 14 | 22 | 16 | 6 | 5 | 3 |
Find the correct answer from the alternatives given.
The formula to find mean from a grouped frequency table is \[X = A + \frac{\sum f_i u_i}{\sum f_i} \times hg\] .
The Mean of n observation x1, x2,..., xn is `bar"X"`. If (a - b) is added to each of the observation, show that the mean of the new set of observation is `bar"X"` + (a - b).
The weights (in kg) of 50 wrestlers are recorded in the following table:
Weight (in kg) | 100 – 110 | 110 – 120 | 120 – 130 | 130 – 140 | 140 – 150 |
Number of wrestlers |
4 | 14 | 21 | 8 | 3 |
Find the mean weight of the wrestlers.
The mileage (km per litre) of 50 cars of the same model was tested by a manufacturer and details are tabulated as given below:
Mileage (km/l) | 10 – 12 | 12 – 14 | 14 – 16 | 16 – 18 |
Number of cars | 7 | 12 | 18 | 13 |
Find the mean mileage. The manufacturer claimed that the mileage of the model was 16 km/litre. Do you agree with this claim?
Find the mean of the following frequency distribution:
Class: | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 |
Frequency: | 4 | 10 | 5 | 6 | 5 |
Using step-deviation method, find mean for the following frequency distribution:
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
Frequency | 3 | 4 | 7 | 6 | 8 | 2 |