Advertisements
Advertisements
प्रश्न
The weekly wages of 120 workers in a factory are shown in the following frequency distribution table. Find the mean of the weekly wages.
Weekly wages
(Rupees)
|
0 - 2000 | 2000 - 4000 | 4000 - 6000 | 6000 - 8000 |
No. of workers | 15 | 35 | 50 | 20 |
उत्तर
Class
(Weekly wages in thousand rupees) |
Class Mark xi |
Frequency (Number of workers) fi |
Class mark × Frequency xifi |
0 - 2000 | 1000 | 15 | 15000 |
2000 - 4000 | 3000 | 35 | 105000 |
4000 - 6000 | 5000 | 50 | 250000 |
6000 - 8000 | 7000 | 20 | 140000 |
`∑f_i = 120` | `∑x_i f_i = 510000` |
Mean = `(∑x_i f_i )/(∑f_i )`
=`510000/120`
= Rs 4250
Hence, the mean of the weekly wages is Rs 4250.
APPEARS IN
संबंधित प्रश्न
The following table gives the literacy rate (in percentage) of 35 cities. Find the mean literacy rate.
Literacy rate (in %) | 45 − 55 | 55 − 65 | 65 − 75 | 75 − 85 | 85 − 95 |
Number of cities | 3 | 10 | 11 | 8 | 3 |
Calculate the mean for the following distribution:-
x | 5 | 6 | 7 | 8 | 9 |
f | 4 | 8 | 14 | 11 | 3 |
Candidates of four schools appear in a mathematics test. The data were as follows:-
Schools | No. of Candidates | Average Score |
I | 60 | 75 |
II | 48 | 80 |
III | NA | 55 |
IV | 40 | 50 |
If the average score of the candidates of all the four schools is 66, find the number of candidates that appeared from school III.
The arithmetic mean of the following data is 14. Find the value of k
x1 | 5 | 10 | 15 | 20 | 25 |
f1 | 7 | k | 8 | 4 | 5 |
In the first proof reading of a book containing 300 pages the following distribution of misprints was obtained:
No. of misprints per page (x) | 0 | 1 | 2 | 3 | 4 | 5 |
No. of pages (f) | 154 | 95 | 36 | 9 | 5 | 1 |
Find the average number of misprints per page.
Find the mean of the following data, using direct method:
Class | 25-35 | 35-45 | 45-55 | 55-65 | 65-75 |
Frequency | 6 | 10 | 8 | 12 | 4 |
The mean of the following frequency data is 42, Find the missing frequencies x and y if the sum of frequencies is 100
Class interval |
0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency | 7 | 10 | x | 13 | y | 10 | 14 | 9 |
Find x and y.
Find the correct answer from the alternatives given.
The formula to find mean from a grouped frequency table is \[X = A + \frac{\sum f_i u_i}{\sum f_i} \times hg\] .
The algebraic sum of the deviations of a frequency distribution from its mean is always ______.
The mean of n observation is `overlineX` .f the first item is increased by 1, second by 2 and so on, then the new mean is
If the mean of the following distribution is 2.6, then the value of y is:
Variable (x) | 1 | 2 | 3 | 4 | 5 |
Frequency | 4 | 5 | y | 1 | 2 |
The following frequency distribution table shows the amount of aid given to 50 flood affected families. Find the mean of the amount of aid.
Amount of aid
(Thousand rupees)
|
50 - 60 | 60 - 70 | 70 - 80 | 80 - 90 | 90 - 100 |
No. of families | 7 | 13 | 20 | 6 | 4 |
A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent.
Number of days: | 0-6 | 6-12 | 12-18 | 18-24 | 24-30 | 30-36 | 36-42 |
Number of students: | 10 | 11 | 7 | 4 | 4 | 3 | 1 |
The mean of the following distribution is 6. Find the value at P:
x | 2 | 4 | 6 | 10 | P + 5 |
f | 3 | 2 | 3 | 1 | 2 |
A car travels from city A to city B, 120 km apart at an average speed of 50km/h. It then makes a return trip at an average speed of 60km/h. It covers another 120km distance at an average speed of 40km/h. The average speed over the entire 360km will be ______.
The weights (in kg) of 50 wrestlers are recorded in the following table:
Weight (in kg) | 100 – 110 | 110 – 120 | 120 – 130 | 130 – 140 | 140 – 150 |
Number of wrestlers |
4 | 14 | 21 | 8 | 3 |
Find the mean weight of the wrestlers.
Find the mean, median and mode of the given data:
Class | 65 – 85 | 85 – 105 | 105 – 125 | 125 – 145 | 145 – 165 | 165 – 185 | 185 –205 |
Frequency | 8 | 7 | 22 | 17 | 13 | 5 | 3 |
250 apples of a box were weighed and the distribution of masses of the apples is given in the following table:
Mass (in grams) |
80 – 100 | 100 – 120 | 120 – 140 | 140 – 160 | 160 – 180 |
Number of apples |
20 | 60 | 70 | x | 60 |
Find the value of x and the mean mass of the apples.
The lengths of 40 leaves of a plant are measured correct to the nearest millimeter, and the data obtained is represented in the following table:
Length (in mm) | Number of leaves |
118−126 | 3 |
127–135 | 5 |
136−144 | 9 |
145–153 | 12 |
154–162 | 5 |
163–171 | 4 |
172–180 | 2 |
Find the mean length of the leaves.