Advertisements
Advertisements
प्रश्न
Find sin 2x, cos 2x, tan 2x if secx = `(-13)/5, pi/2 < x < pi`
उत्तर
Since `pi/2 < x < pi, x` lies in the second quadrant.
We have sec x = `-13/5`
∴ tan2x = sec2x – 1 = `(-13/5)^2 - 1`
= `169/25 - 1`
= `144/25`
∴ tanx = `±12/5`
But x lies in the second quadrant
∴ tanx is negative
∴ tanx = `-12/5`
∴ sin2x = `(2tanx)/(1 + tan^2x)`
= `(2(-12/5))/(1 + (-12/5)^2)`
= `((-24/5))/(1 + 144/25)`
= `((-24)/5)/(169/25)`
= `(-24)/5 xx 25/169`
= `(-120)/169`
cos2x = `(1 - tan^2x)/(1 + tan^2x)`
= `(1 - (-12/5)^2)/(1 + (-12/5)^2`
= `(1 - 144/25)/(1 + 144/25)`
= `(25 - 144)/(25 + 144)`
= `-119/169`
tan2x = `(2tanx)/(1 - tan^2x)`
= `(2(-12/5))/(1 - (-12/5)^2`
= `((-24/5))/(1 - 144/25)`
= `((-24/5))/((-119/25)`
= `24/5 xx 25/119`
= `120/119`
APPEARS IN
संबंधित प्रश्न
Prove the following:
`cos (pi/2 - x) cos(pi/2 - y) - sin(pi/2 - x) sin(pi/2 - y)` = – cos (x + y)
Prove the following:
cos(x + y).cos(x − y) = cos2y − sin2x
Prove the following:
tan8θ − tan5θ − tan3θ = tan8θ · tan5θ · tan3θ
Prove the following:
tan50° = tan40° + 2 tan10°
If tan x = `3/4, π < x < (3π)/2`, then the value of `cos x/2` is ______.
The value of tan `π/8` is ______.
The value of `(cotx - tanx)/(cot 2x)` is ______.