Advertisements
Advertisements
प्रश्न
Find the value of :
`cos pi/8`
उत्तर
We know that, cos2θ = 2cos2θ − 1
1 + cos2θ = 2cos2θ
cos2θ = `(1 + cos2theta)/2`
Substituting θ = `pi/8`, we get
`cos^2 pi/8 = (1 + cos 2(pi/8))/2`
= `(1 + cos (pi/4))/2`
= `(1 + 1/sqrt(2))/2`
= `(sqrt(2) + 1)/(2sqrt(2)`
∴ `cos pi/8 = sqrt((sqrt(2) + 1)/(2sqrt(2))) ...[because cos pi/8 "is posiive"]`
∴ `cos pi/8 = sqrt((sqrt(2) + 1)/(2sqrt(2)) xx sqrt(2)/sqrt(2)`
= `sqrt((2 + sqrt(2))/4`
∴ `cos pi/8 = sqrt(2 + sqrt(2))/2`
APPEARS IN
संबंधित प्रश्न
Prove the following:
`(tan5"A" - tan3"A")/(tan5"A" + tan3"A") = (sin2"A")/(sin8"A")`
Prove the following:
`sin pi^"c"/8 = 1/2sqrt(2 - sqrt(2))`
Prove the following:
`(1 - cos2theta)/(1 + cos2theta)` = tan2θ
Prove the following:
`(cosx + sinx)/(cosx - sinx) - (cosx - sinx)/(cosx + sinx)` = 2tan2x
Prove the following:
`sqrt(2 + sqrt(2 + sqrt(2 + 2cos8x)` = 2 cos x
Prove the following:
`(sin3x)/cosx + (cos3x)/sinx` = 2 cot 2x
Find the value of :
`sin pi/8`