मराठी

Find the Sum of the Following Arithmetic Progressions: 41, 36, 31, ... to 12 Terms - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the following arithmetic progressions:

41, 36, 31, ... to 12 terms

उत्तर

In the given problem, we need to find the sum of terms for different arithmetic progressions. So, here we use the following formula for the sum of n terms of an A.P.,

`S_n = n/2 [2a + (n -1)d]`

Where; a = first term for the given A.P.

d = common difference of the given A.P.

= number of terms

41, 36, 31, ... to 12 terms

Common difference of the A.P. (d) = `a_2 - a_1`

= 36 - 41

= -5

Number of terms (n) = 12

The first term for the given A.P. (a) = 41

So, using the formula we get,

`S_12 = 12/2 [2(41) + (12 - 1)(-5)]` 

= (6)[82 + (11)(-5)]

= (6)[82 - 55]

= (6)[27]

= 162

Therefore the sum of first 12 terms for the given A.P is 162

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Arithmetic Progression - Exercise 5.6 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 5 Arithmetic Progression
Exercise 5.6 | Q 1.4 | पृष्ठ ३०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×