Advertisements
Advertisements
प्रश्न
Find the sum of the following arithmetic progressions:
`(x - y)/(x + y),(3x - 2y)/(x + y), (5x - 3y)/(x + y)`, .....to n terms
उत्तर
`(x - y)/(x + y),(3x - 2y)/(x + y), (5x - 3y)/(x + y)`, .....to n terms
Number of terms (n) = n
Number of terms (n) = n = `((x - y)/(x + y))`
Common difference of the A.P. (d) = `a_2 - a_1`
`= ((3x - 2)/(x + y)) - (x - y)/(x + y)`
`= ((3x - 2y) - (x - y))/(x +y)`
`= (3x - 2y - x + y)/(x + y)`
`= (2x - y)/(x - y)`
So using the formula we get
`S_n = n/2[2((x - y)/(x + y)) + (n - 1)((2x - y )/(x + y))]`
`= (n/2) [((2x - 2y)/(x + y)) + (n(2x - y)- 2x + y)/(x + y)]`
`= (n/2)[(2x -2y)/(x + y) + (((n (2x - y) - 2x + y))/(x + y))]`
Now, on further solving the above equation we get,
`= (n/2)((2x - 2y + n(2x - y) - 2x + y)/(x + y))`
`= (n/2) ((n(2x - y) - y)/(x + y))`
Therefore, the sum of first n terms for the given A.P. is `(n/2) ((n(2x - y) - y)/(x + y))`
APPEARS IN
संबंधित प्रश्न
Find the sum given below:
–5 + (–8) + (–11) + ... + (–230)
Find the sum of the odd numbers between 0 and 50.
Find the sum to n term of the A.P. 5, 2, −1, −4, −7, ...,
How many terms of the A.P. 63, 60, 57, ... must be taken so that their sum is 693?
Find the sum of the first 40 positive integers divisible by 3
Find four consecutive terms in an A.P. whose sum is 12 and sum of 3rd and 4th term is 14.
(Assume the four consecutive terms in A.P. are a – d, a, a + d, a +2d)
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
If the sum of first p term of an A.P. is ap2 + bp, find its common difference.
If Sr denotes the sum of the first r terms of an A.P. Then , S3n: (S2n − Sn) is
The common difference of the A.P.