मराठी

Find the Sum of N Terms of an A.P. Whose Nth Terms is Given by an = 5 − 6n. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of n terms of an A.P. whose nth terms is given by an = 5 − 6n.

उत्तर

Here, we are given an A.P., whose nth term is given by the following expression, 

`a_n = 5   -6n`

So, here we can find the sum of the n terms of the given A.P., using the formula, 

`S_n = (n/2) (a + l)`

Where a = the first term

l = the last term

So, for the given A.P,

The first term (a) will be calculated using n = 1in the given equation for nth term of A.P.

a = 5 - 6(1)

= 5 - 6

= -1

Now, the last term (l) or the nth term is given

`a_n = 5 - 6n`

So, on substituting the values in the formula for the sum of n terms of an A.P., we get,

`S_n = (n/2) [(-1) + 5 - 6n]`

`= (n/2) [4 - 6n]`

`= (n/2) (2)[2 - 3n]`

= (n)(2 - 3n)

Therefore the sum of the n terms of the given A.P. is  `(n)(2 - 3n)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Arithmetic Progression - Exercise 5.6 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 5 Arithmetic Progression
Exercise 5.6 | Q 3 | पृष्ठ ५१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×