Advertisements
Advertisements
प्रश्न
Find the Co-efficient of x11 in the expansion of `(x + 2/x^2)^17`
उत्तर
In `(x + 2/x^2)^17`, n = 17, x = x, a = `2/x^2`
∴ The general terms is
`"t"_(r + 1) = n"C"_r x^(n - r) a^r`
`= 17C_r x^(17-r) (2/x^2)^r`
`= 17C_r x^(17-r) * 2^r/(x^(2r))`
`= 17C_r * 2^r x^(17 - 3r)` ....(1)
To get the co-efficient of x11,
⇒ 17 - 3r = 11
⇒ 17 - 11 = 3r
⇒ 3r = 6
⇒ r = 2
Put r = 2 in (1) we get,
`"t"_3 = 17"C"_2 2^2 x^(17-3(2))`
= 17C2(4)x11
`= (17 xx 16)/(2xx1) xx 4 * x^11`
= 544 x11
∴ Co-efficient of x11 is 544.
APPEARS IN
संबंधित प्रश्न
Find the middle terms in the expansion of
`(3x + x^2/2)^8`
Show that the middle term in the expansion of is (1 + x)2n is `(1*3*5...(2n - 1)2^nx^n)/(n!)`
The middle term in the expansion of `(x + 1/x)^10` is
The constant term in the expansion of `(x + 2/x)^6` is
Compute 994
Find the coefficient of x2 and the coefficient of x6 in `(x^2 -1/x^3)^6`
Find the constant term of `(2x^3 - 1/(3x^2))^5`
If n is a positive integer, using Binomial theorem, show that, 9n+1 − 8n − 9 is always divisible by 64
In the binomial expansion of (a + b)n, if the coefficients of the 4th and 13th terms are equal then, find n
In the binomial expansion of (1 + x)n, the coefficients of the 5th, 6th and 7th terms are in AP. Find all values of n