Advertisements
Advertisements
प्रश्न
Find the coefficient of x2 and the coefficient of x6 in `(x^2 -1/x^3)^6`
उत्तर
General term Tr+1 = `""^6"C"_"r" (x^2)^(6 - "r") ((-1)/x^3)^"r"`
= `""^6"C"_"r" x^(12 - 2"r") (- 1)^"r" 1/(x^(3"r"))`
= `""^6"C"_"r" (- 1)^"r" x^(12 - 2"r" - 3"r")`
= `""^16"C"_"r" ( 1)^"r"x^(12 - 5"r")`
To find coefficient of x6
12 – 5r = 6
12 – 6 = 5r
⇒ 5r = 6
⇒ r = `6/5` which is not an integer.
∴ There is no term involving x6.
To find coefficient of x2
12 – 5r = 2
5r = 12 – 2 = 10
⇒ r = 2
So coefficient of x2 is `""^6"C"_2 (- 1)^2 = (6 xx 5)/(2 xx 1)(1)` = 15
APPEARS IN
संबंधित प्रश्न
Expand the following by using binomial theorem.
(2a – 3b)4
Find the 5th term in the expansion of (x – 2y)13.
Find the middle terms in the expansion of
`(2x^2 - 3/x^3)^10`
Find the term independent of x in the expansion of
`(x^2 - 2/(3x))^9`
Find the term independent of x in the expansion of
`(x - 2/x^2)^15`
Find the Co-efficient of x11 in the expansion of `(x + 2/x^2)^17`
The last term in the expansion of (3 + √2 )8 is:
Sum of binomial coefficient in a particular expansion is 256, then number of terms in the expansion is:
Expand `(2x^2 - 3/x)^3`
Expand `(2x^2 -3sqrt(1 - x^2))^4 + (2x^2 + 3sqrt(1 - x^2))^4`
Compute 1024
Compute 994
Using binomial theorem, indicate which of the following two number is larger: `(1.01)^(1000000)`, 10
Find the coefficient of x15 in `(x^2 + 1/x^3)^10`
If n is an odd positive integer, prove that the coefficients of the middle terms in the expansion of (x + y)n are equal
In the binomial expansion of (a + b)n, if the coefficients of the 4th and 13th terms are equal then, find n
If the binomial coefficients of three consecutive terms in the expansion of (a + x)n are in the ratio 1 : 7 : 42, then find n